These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
428 related articles for article (PubMed ID: 29253932)
1. Impact of TEMPO-oxidization strength on the properties of cellulose nanofibril reinforced polyvinyl acetate nanocomposites. Hamou KB; Kaddami H; Dufresne A; Boufi S; Magnin A; Erchiqui F Carbohydr Polym; 2018 Feb; 181():1061-1070. PubMed ID: 29253932 [TBL] [Abstract][Full Text] [Related]
2. Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: Extrusion processing. Ghanbari A; Tabarsa T; Ashori A; Shakeri A; Mashkour M Int J Biol Macromol; 2018 Jun; 112():442-447. PubMed ID: 29410268 [TBL] [Abstract][Full Text] [Related]
3. Effect of Cellulose Nanofibrils and TEMPO-mediated Oxidized Cellulose Nanofibrils on the Physical and Mechanical Properties of Poly(vinylidene fluoride)/Cellulose Nanofibril Composites. Barnes E; Jefcoat JA; Alberts EM; McKechnie MA; Peel HR; Buchanan JP; Weiss CA; Klaus KL; Mimun LC; Warner CM Polymers (Basel); 2019 Jun; 11(7):. PubMed ID: 31252644 [TBL] [Abstract][Full Text] [Related]
4. Biodegradable cellulose I (II) nanofibrils/poly(vinyl alcohol) composite films with high mechanical properties, improved thermal stability and excellent transparency. Xing L; Hu C; Zhang W; Guan L; Gu J Int J Biol Macromol; 2020 Dec; 164():1766-1775. PubMed ID: 32763405 [TBL] [Abstract][Full Text] [Related]
5. Reinforcement of all-cellulose nanocomposite films using native cellulose nanofibrils. Zhao J; He X; Wang Y; Zhang W; Zhang X; Zhang X; Deng Y; Lu C Carbohydr Polym; 2014 Apr; 104():143-50. PubMed ID: 24607171 [TBL] [Abstract][Full Text] [Related]
6. Improved mechanical properties of polylactide nanocomposites-reinforced with cellulose nanofibrils through interfacial engineering via amine-functionalization. Lu Y; Cueva MC; Lara-Curzio E; Ozcan S Carbohydr Polym; 2015 Oct; 131():208-17. PubMed ID: 26256177 [TBL] [Abstract][Full Text] [Related]
7. Influence of PVA and silica on chemical, thermo-mechanical and electrical properties of Celluclast-treated nanofibrillated cellulose composites. Poyraz B; Tozluoğlu A; Candan Z; Demir A; Yavuz M Int J Biol Macromol; 2017 Nov; 104(Pt A):384-392. PubMed ID: 28602986 [TBL] [Abstract][Full Text] [Related]
8. Nanocomposite edible films from mango puree reinforced with cellulose nanofibers. Azeredo HM; Mattoso LH; Wood D; Williams TG; Avena-Bustillos RJ; McHugh TH J Food Sci; 2009 Jun; 74(5):N31-5. PubMed ID: 19646052 [TBL] [Abstract][Full Text] [Related]
10. Highly Transparent and Toughened Poly(methyl methacrylate) Nanocomposite Films Containing Networks of Cellulose Nanofibrils. Dong H; Sliozberg YR; Snyder JF; Steele J; Chantawansri TL; Orlicki JA; Walck SD; Reiner RS; Rudie AW ACS Appl Mater Interfaces; 2015 Nov; 7(45):25464-72. PubMed ID: 26513136 [TBL] [Abstract][Full Text] [Related]
11. Effect of Length of Cellulose Nanofibers on Mechanical Reinforcement of Polyvinyl Alcohol. Wang M; Miao X; Li H; Chen C Polymers (Basel); 2021 Dec; 14(1):. PubMed ID: 35012151 [TBL] [Abstract][Full Text] [Related]
12. Bio-based polyurethane reinforced with cellulose nanofibers: a comprehensive investigation on the effect of interface. Benhamou K; Kaddami H; Magnin A; Dufresne A; Ahmad A Carbohydr Polym; 2015 May; 122():202-11. PubMed ID: 25817660 [TBL] [Abstract][Full Text] [Related]
13. Preparation and characterization of transparent PMMA-cellulose-based nanocomposites. Kiziltas EE; Kiziltas A; Bollin SC; Gardner DJ Carbohydr Polym; 2015; 127():381-9. PubMed ID: 25965497 [TBL] [Abstract][Full Text] [Related]
14. Enhancing strength and toughness of cellulose nanofibril network structures with an adhesive peptide. Trovatti E; Tang H; Hajian A; Meng Q; Gandini A; Berglund LA; Zhou Q Carbohydr Polym; 2018 Feb; 181():256-263. PubMed ID: 29253970 [TBL] [Abstract][Full Text] [Related]
15. Polyethylene cellulose nanofibrils nanocomposites. Maia THS; Larocca NM; Beatrice CAG; de Menezes AJ; de Freitas Siqueira G; Pessan LA; Dufresne A; França MP; de Almeida Lucas A Carbohydr Polym; 2017 Oct; 173():50-56. PubMed ID: 28732893 [TBL] [Abstract][Full Text] [Related]
16. Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties. Peng XW; Ren JL; Zhong LX; Sun RC Biomacromolecules; 2011 Sep; 12(9):3321-9. PubMed ID: 21815695 [TBL] [Abstract][Full Text] [Related]
17. Preparation and characterization of starch-based composite films reinforced by cellulose nanofibers. Fazeli M; Keley M; Biazar E Int J Biol Macromol; 2018 Sep; 116():272-280. PubMed ID: 29729338 [TBL] [Abstract][Full Text] [Related]
19. Surface Charges Control the Structure and Properties of Layered Nanocomposite of Cellulose Nanofibrils and Clay Platelets. Xu D; Wang S; Berglund LA; Zhou Q ACS Appl Mater Interfaces; 2021 Jan; 13(3):4463-4472. PubMed ID: 33428385 [TBL] [Abstract][Full Text] [Related]
20. Reinforcement Effects from Nanodiamond in Cellulose Nanofibril Films. Morimune-Moriya S; Salajkova M; Zhou Q; Nishino T; Berglund LA Biomacromolecules; 2018 Jul; 19(7):2423-2431. PubMed ID: 29620880 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]