These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
491 related articles for article (PubMed ID: 29253942)
1. Enzymatic pretreatment for the improvement of dispersion and film properties of cellulose nanofibrils. Nie S; Zhang K; Lin X; Zhang C; Yan D; Liang H; Wang S Carbohydr Polym; 2018 Feb; 181():1136-1142. PubMed ID: 29253942 [TBL] [Abstract][Full Text] [Related]
2. Exploring xylan removal via enzymatic post-treatment to tailor the properties of cellulose nanofibrils for packaging film applications. Las-Casas B; Arantes V Int J Biol Macromol; 2024 Aug; 274(Pt 2):133325. PubMed ID: 38908627 [TBL] [Abstract][Full Text] [Related]
3. Current Progress in Rheology of Cellulose Nanofibril Suspensions. Nechyporchuk O; Belgacem MN; Pignon F Biomacromolecules; 2016 Jul; 17(7):2311-20. PubMed ID: 27310523 [TBL] [Abstract][Full Text] [Related]
4. Enhancing strength and toughness of cellulose nanofibril network structures with an adhesive peptide. Trovatti E; Tang H; Hajian A; Meng Q; Gandini A; Berglund LA; Zhou Q Carbohydr Polym; 2018 Feb; 181():256-263. PubMed ID: 29253970 [TBL] [Abstract][Full Text] [Related]
5. Structure and Properties of Polylactic Acid Biocomposite Films Reinforced with Cellulose Nanofibrils. Wang Q; Ji C; Sun J; Zhu Q; Liu J Molecules; 2020 Jul; 25(14):. PubMed ID: 32708238 [TBL] [Abstract][Full Text] [Related]
6. Nanofibrillated cellulose (CNF) from eucalyptus sawdust as a dry strength agent of unrefined eucalyptus handsheets. Vallejos ME; Felissia FE; Area MC; Ehman NV; Tarrés Q; Mutjé P Carbohydr Polym; 2016 Mar; 139():99-105. PubMed ID: 26794952 [TBL] [Abstract][Full Text] [Related]
7. Combined bleaching and hydrolysis for isolation of cellulose nanofibrils from waste sackcloth. Cao Y; Jiang Y; Song Y; Cao S; Miao M; Feng X; Fang J; Shi L Carbohydr Polym; 2015 Oct; 131():152-8. PubMed ID: 26256171 [TBL] [Abstract][Full Text] [Related]
8. Effect of the oxidation treatment on the production of cellulose nanofiber suspensions from Posidonia oceanica: The rheological aspect. Bettaieb F; Nechyporchuk O; Khiari R; Mhenni MF; Dufresne A; Belgacem MN Carbohydr Polym; 2015 Dec; 134():664-72. PubMed ID: 26428170 [TBL] [Abstract][Full Text] [Related]
10. The effects of cellulose nanocrystal and cellulose nanofiber on the properties of pumpkin starch-based composite films. Zhang L; Zhao J; Zhang Y; Li F; Jiao X; Li Q Int J Biol Macromol; 2021 Dec; 192():444-451. PubMed ID: 34606791 [TBL] [Abstract][Full Text] [Related]
11. Highly Transparent and Toughened Poly(methyl methacrylate) Nanocomposite Films Containing Networks of Cellulose Nanofibrils. Dong H; Sliozberg YR; Snyder JF; Steele J; Chantawansri TL; Orlicki JA; Walck SD; Reiner RS; Rudie AW ACS Appl Mater Interfaces; 2015 Nov; 7(45):25464-72. PubMed ID: 26513136 [TBL] [Abstract][Full Text] [Related]
12. Hydrophobization and smoothing of cellulose nanofibril films by cellulose ester coatings. Willberg-Keyriläinen P; Vartiainen J; Pelto J; Ropponen J Carbohydr Polym; 2017 Aug; 170():160-165. PubMed ID: 28521982 [TBL] [Abstract][Full Text] [Related]
13. Effect of xylanase-assisted pretreatment on the properties of cellulose and regenerated cellulose films from sugarcane bagasse. Vanitjinda G; Nimchua T; Sukyai P Int J Biol Macromol; 2019 Feb; 122():503-516. PubMed ID: 30385339 [TBL] [Abstract][Full Text] [Related]
14. Microemulsion systems for fiber deconstruction into cellulose nanofibrils. Carrillo CA; Laine J; Rojas OJ ACS Appl Mater Interfaces; 2014 Dec; 6(24):22622-7. PubMed ID: 25454578 [TBL] [Abstract][Full Text] [Related]
15. Influence of Lactic Acid Surface Modification of Cellulose Nanofibrils on the Properties of Cellulose Nanofibril Films and Cellulose Nanofibril-Poly(lactic acid) Composites. Lafia-Araga RA; Sabo R; Nabinejad O; Matuana L; Stark N Biomolecules; 2021 Sep; 11(9):. PubMed ID: 34572560 [TBL] [Abstract][Full Text] [Related]
16. Using carboxylated cellulose nanofibers to enhance mechanical and barrier properties of collagen fiber film by electrostatic interaction. Wang W; Zhang X; Li C; Du G; Zhang H; Ni Y J Sci Food Agric; 2018 Jun; 98(8):3089-3097. PubMed ID: 29210456 [TBL] [Abstract][Full Text] [Related]
17. Effect of retention rate of fluorescent cellulose nanofibrils on paper properties and structure. Ding Q; Zeng J; Wang B; Gao W; Chen K; Yuan Z; Xu J; Tang D Carbohydr Polym; 2018 Apr; 186():73-81. PubMed ID: 29456011 [TBL] [Abstract][Full Text] [Related]
18. Integration of wood-based components - Cellulose nanofibrils and tannic acid - into a poly(vinyl alcohol) matrix to improve functional properties. Osolnik U; Vek V; Korošec RC; Oven P; Poljanšek I Int J Biol Macromol; 2024 Jan; 256(Pt 2):128495. PubMed ID: 38035953 [TBL] [Abstract][Full Text] [Related]
19. Thermogravimetry study of xylanase- and laccase/mediator-treated eucalyptus pulp fibres. Barneto AG; Valls C; Ariza J; Roncero MB Bioresour Technol; 2011 Oct; 102(19):9033-9. PubMed ID: 21840212 [TBL] [Abstract][Full Text] [Related]
20. Hybrid films of chitosan, cellulose nanofibrils and boric acid: Flame retardancy, optical and thermo-mechanical properties. Uddin KMA; Ago M; Rojas OJ Carbohydr Polym; 2017 Dec; 177():13-21. PubMed ID: 28962751 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]