These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 29253982)

  • 1. Ion-crosslinked wood-derived nanocellulose hydrogels with tunable antibacterial properties: Candidate materials for advanced wound care applications.
    Basu A; Heitz K; Strømme M; Welch K; Ferraz N
    Carbohydr Polym; 2018 Feb; 181():345-350. PubMed ID: 29253982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemocompatibility of Ca
    Basu A; Hong J; Ferraz N
    Macromol Biosci; 2017 Nov; 17(11):. PubMed ID: 28941135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Absorbent Antibacterial and Biofilm-Disrupting Hydrogels from Cellulose for Wound Dressing Applications.
    Tavakolian M; Munguia-Lopez JG; Valiei A; Islam MS; Kinsella JM; Tufenkji N; van de Ven TGM
    ACS Appl Mater Interfaces; 2020 Sep; 12(36):39991-40001. PubMed ID: 32794770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of different divalent ions cross-linking sodium alginate-polyacrylamide hydrogels on antibacterial properties and wound healing.
    Zhou Q; Kang H; Bielec M; Wu X; Cheng Q; Wei W; Dai H
    Carbohydr Polym; 2018 Oct; 197():292-304. PubMed ID: 30007617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genipin crosslinked gelatin-diosgenin-nanocellulose hydrogels for potential wound dressing and healing applications.
    Ilkar Erdagi S; Asabuwa Ngwabebhoh F; Yildiz U
    Int J Biol Macromol; 2020 Apr; 149():651-663. PubMed ID: 32006574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel copper (II) alginate hydrogels and their potential for use as anti-bacterial wound dressings.
    Klinkajon W; Supaphol P
    Biomed Mater; 2014 Aug; 9(4):045008. PubMed ID: 25029588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The interaction of wood nanocellulose dressings and the wound pathogen P. aeruginosa.
    Jack AA; Nordli HR; Powell LC; Powell KA; Kishnani H; Johnsen PO; Pukstad B; Thomas DW; Chinga-Carrasco G; Hill KE
    Carbohydr Polym; 2017 Feb; 157():1955-1962. PubMed ID: 27987916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocomposites of copper-containing mesoporous bioactive glass and nanofibrillated cellulose: Biocompatibility and angiogenic promotion in chronic wound healing application.
    Wang X; Cheng F; Liu J; Smått JH; Gepperth D; Lastusaari M; Xu C; Hupa L
    Acta Biomater; 2016 Dec; 46():286-298. PubMed ID: 27646503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silver complex of salicylic acid and its hydrogel-cream in wound healing chemotherapy.
    Stathopoulou MK; Banti CN; Kourkoumelis N; Hatzidimitriou AG; Kalampounias AG; Hadjikakou SK
    J Inorg Biochem; 2018 Apr; 181():41-55. PubMed ID: 29407907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibacterial Activity of Silver Nanoparticle-Loaded Soft Contact Lens Materials: The Effect of Monomer Composition.
    Shayani Rad M; Khameneh B; Sabeti Z; Mohajeri SA; Fazly Bazzaz BS
    Curr Eye Res; 2016 Oct; 41(10):1286-1293. PubMed ID: 27212193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-sticky and antimicrobial zwitterionic nanocomposite dressings for infected chronic wounds.
    Huang KT; Fang YL; Hsieh PS; Li CC; Dai NT; Huang CJ
    Biomater Sci; 2017 May; 5(6):1072-1081. PubMed ID: 28466896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrospun zwitterionic poly(sulfobetaine methacrylate) for nonadherent, superabsorbent, and antimicrobial wound dressing applications.
    Lalani R; Liu L
    Biomacromolecules; 2012 Jun; 13(6):1853-63. PubMed ID: 22545647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antibacterial and hemostatic hydrogel via nanocomposite from cellulose nanofibers.
    Liu R; Dai L; Si C; Zeng Z
    Carbohydr Polym; 2018 Sep; 195():63-70. PubMed ID: 29805020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lignin-cellulose complexes derived from agricultural wastes for combined antibacterial and tissue engineering scaffolds for cutaneous leishmaniasis wounds.
    Huët MAL; Phul IC; Goonoo N; Li Z; Li X; Bhaw-Luximon A
    J Mater Chem B; 2024 Jun; 12(22):5496-5512. PubMed ID: 38742807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the use of ion-crosslinked nanocellulose hydrogels for wound healing solutions: Physicochemical properties and application-oriented biocompatibility studies.
    Basu A; Lindh J; Ålander E; Strømme M; Ferraz N
    Carbohydr Polym; 2017 Oct; 174():299-308. PubMed ID: 28821071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antibacterial composite hydrogels of graphene quantum dots and bacterial cellulose accelerate wound healing.
    Zmejkoski DZ; Marković ZM; Mitić DD; Zdravković NM; Kozyrovska NO; Bugárová N; Todorović Marković BM
    J Biomed Mater Res B Appl Biomater; 2022 Aug; 110(8):1796-1805. PubMed ID: 35191591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinspired Multifunctional Cellulose Nanofibril-Based
    Zhao C; Chen R; Chen Z; Lu Q; Zhu H; Bu Q; Yin J; He H
    ACS Appl Mater Interfaces; 2021 Nov; 13(43):51578-51591. PubMed ID: 34666485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibacterial potency of V.A.C. GranuFoam Silver(®) Dressing.
    Sachsenmaier S; Peschel A; Ipach I; Kluba T
    Injury; 2013 Oct; 44(10):1363-7. PubMed ID: 23928285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Situ Forming and H
    Lee Y; Choi KH; Park KM; Lee JM; Park BJ; Park KD
    ACS Appl Mater Interfaces; 2017 May; 9(20):16890-16899. PubMed ID: 28474514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Apitherapeutics and phage-loaded nanofibers as wound dressings with enhanced wound healing and antibacterial activity.
    Sarhan WA; Azzazy HM
    Nanomedicine (Lond); 2017 Sep; 12(17):2055-2067. PubMed ID: 28805554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.