These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 29254017)

  • 1. Reactivity of main components and substituent distribution in esterified sugarcane bagasse prepared by effective solid phase reaction.
    Gan T; Zhang Y; Chen Y; Hu H; Yang M; Huang Z; Chen D; Huang A
    Carbohydr Polym; 2018 Feb; 181():633-641. PubMed ID: 29254017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Esterification of sugarcane bagasse by citric acid for Pb
    Hoang MT; Pham TD; Pham TT; Nguyen MK; Nu DTT; Nguyen TH; Bartling S; Van der Bruggen B
    Environ Sci Pollut Res Int; 2021 Mar; 28(10):11869-11881. PubMed ID: 31953762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanocatalytic Solvent-Free Esterification of Sugarcane Bagasse.
    Zhang Q; Zhang X; Zhu Z; Zhang A; Zhang C; Wang X; Liu C
    Polymers (Basel); 2018 Mar; 10(3):. PubMed ID: 30966317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Esterification Mechanism of Bagasse Modified with Glutaric Anhydride in 1-Allyl-3-methylimidazolium Chloride.
    Wang H; Chen W; Zhang X; Liu C; Sun R
    Materials (Basel); 2017 Aug; 10(8):. PubMed ID: 28820479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Changes of Bagasse dusring the Homogeneous Esterification with Maleic Anhydride in Ionic Liquid 1-Allyl-3-methylimidazolium Chloride.
    Wang H; Chen W; Zhang X; Wei Y; Zhang A; Liu S; Wang X; Liu C
    Polymers (Basel); 2018 Apr; 10(4):. PubMed ID: 30966468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of mechanical activation on structure changes and reactivity in further chemical modification of lignin.
    Zhao X; Zhang Y; Hu H; Huang Z; Yang M; Chen D; Huang K; Huang A; Qin X; Feng Z
    Int J Biol Macromol; 2016 Oct; 91():1081-9. PubMed ID: 27344951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Green route to modification of wood waste, cellulose and hemicellulose using reactive extrusion.
    Vaidya AA; Gaugler M; Smith DA
    Carbohydr Polym; 2016 Jan; 136():1238-50. PubMed ID: 26572467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Establishment of efficient system for bagasse bargaining: Combining fractionation of saccharides, recycling of high-viscosity solvent and dismantling.
    Li Y; Kang X; You Z; He T; Su T; Zhang J; Zhuang X; Zhang Z; Ragauskas AJ; Song X; Li K
    Bioresour Technol; 2024 Dec; 413():131482. PubMed ID: 39270989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilization of sugarcane bagasse for bioethanol production: sono-assisted acid hydrolysis approach.
    Velmurugan R; Muthukumar K
    Bioresour Technol; 2011 Jul; 102(14):7119-23. PubMed ID: 21570831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous production of cellulase and reducing sugar through modification of compositional and structural characteristic of sugarcane bagasse.
    Yoon LW; Ngoh GC; Chua AS
    Enzyme Microb Technol; 2013 Sep; 53(4):250-6. PubMed ID: 23931690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of alkaline pre-treatment on enzyme synergy for efficient hemicellulose hydrolysis in sugarcane bagasse.
    Beukes N; Pletschke BI
    Bioresour Technol; 2011 Apr; 102(8):5207-13. PubMed ID: 21353533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic study on ultrasound assisted pretreatment of sugarcane bagasse using metal salt with hydrogen peroxide for bioethanol production.
    Ramadoss G; Muthukumar K
    Ultrason Sonochem; 2016 Jan; 28():207-217. PubMed ID: 26384901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergism of cellulase, xylanase, and pectinase on hydrolyzing sugarcane bagasse resulting from different pretreatment technologies.
    Li J; Zhou P; Liu H; Xiong C; Lin J; Xiao W; Gong Y; Liu Z
    Bioresour Technol; 2014 Mar; 155():258-65. PubMed ID: 24457310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Fractionating pretreatment of sugarcane bagasse for increasing the enzymatic digestibility of cellulose].
    Zhao X; Liu D
    Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):384-92. PubMed ID: 21650018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using high pressure processing (HPP) to pretreat sugarcane bagasse.
    Castañón-Rodríguez JF; Torrestiana-Sánchez B; Montero-Lagunes M; Portilla-Arias J; Ramírez de León JA; Aguilar-Uscanga MG
    Carbohydr Polym; 2013 Oct; 98(1):1018-24. PubMed ID: 23987442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal Degradation Kinetics of Sugarcane Bagasse and Soft Wood Cellulose.
    Mohomane SM; Motaung TE; Revaprasadu N
    Materials (Basel); 2017 Oct; 10(11):. PubMed ID: 29143788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradation of sugarcane bagasse by Pleurotus citrinopileatus.
    Pandey VK; Singh MP; Srivastava AK; Vishwakarma SK; Takshak S
    Cell Mol Biol (Noisy-le-grand); 2012 Dec; 58(1):8-14. PubMed ID: 23273185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3 nm Thick Lignocellulose Nanofibers Obtained from Esterified Wood with Maleic Anhydride.
    Iwamoto S; Endo T
    ACS Macro Lett; 2015 Jan; 4(1):80-83. PubMed ID: 35596377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the pellets produced from sugarcane bagasse during liquid hot water pretreatment and their impact on the enzymatic hydrolysis.
    Wang W; Zhuang X; Yuan Z; Yu Q; Qi W
    Bioresour Technol; 2015 Aug; 190():7-12. PubMed ID: 25916262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing the enzymatic digestibility of sugarcane bagasse through the application of an ionic liquid in combination with an acid catalyst.
    Diedericks D; van Rensburg E; García-Aparicio Mdel P; Görgens JF
    Biotechnol Prog; 2012; 28(1):76-84. PubMed ID: 21954210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.