BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 29254114)

  • 1. Application of virtual environments in a multi-disciplinary day neurorehabilitation program to improve executive functioning using the Stroop task.
    Dahdah MN; Bennett M; Prajapati P; Parsons TD; Sullivan E; Driver S
    NeuroRehabilitation; 2017; 41(4):721-734. PubMed ID: 29254114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of executive function in adolescence: a comparison of traditional and virtual reality tools.
    Lalonde G; Henry M; Drouin-Germain A; Nolin P; Beauchamp MH
    J Neurosci Methods; 2013 Sep; 219(1):76-82. PubMed ID: 23867080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the effects of caffeine on executive functions using traditional Stroop and a new ecologically-valid virtual reality task, the Jansari assessment of Executive Functions (JEF(©)).
    Soar K; Chapman E; Lavan N; Jansari AS; Turner JJ
    Appetite; 2016 Oct; 105():156-63. PubMed ID: 27215836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Virtual reality in neurorehabilitation: a review of its effects on multiple cognitive domains.
    Riva G; Mancuso V; Cavedoni S; Stramba-Badiale C
    Expert Rev Med Devices; 2020 Oct; 17(10):1035-1061. PubMed ID: 32962433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of immersive virtual reality with traditional neuropsychological measures in the assessment of executive functions.
    Davison SMC; Deeprose C; Terbeck S
    Acta Neuropsychiatr; 2018 Apr; 30(2):79-89. PubMed ID: 28482936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtual reality Stroop task for assessment of supervisory attentional processing.
    Parsons TD; Courtney CG; Dawson ME
    J Clin Exp Neuropsychol; 2013; 35(8):812-26. PubMed ID: 23961959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of robotic neurorehabilitation through lokomat plus virtual reality on cognitive function in patients with traumatic brain injury: A retrospective case-control study.
    Maggio MG; Torrisi M; Buda A; De Luca R; Piazzitta D; Cannavò A; Leo A; Milardi D; Manuli A; Calabro RS
    Int J Neurosci; 2020 Feb; 130(2):117-123. PubMed ID: 31590592
    [No Abstract]   [Full Text] [Related]  

  • 8. Factor analysis of the virtual reality Stroop task.
    Asbee J; Kelly K; McMahan T; Parsons TD
    J Clin Exp Neuropsychol; 2022 Oct; 44(8):604-617. PubMed ID: 36444652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exergaming Executive Functions: An Immersive Virtual Reality-Based Cognitive Training for Adults Aged 50 and Older.
    Huang KT
    Cyberpsychol Behav Soc Netw; 2020 Mar; 23(3):143-149. PubMed ID: 31794673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virtual Apartment-Based Stroop for assessing distractor inhibition in healthy aging.
    Parsons TD; Barnett M
    Appl Neuropsychol Adult; 2019; 26(2):144-154. PubMed ID: 28976213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validity of the Virtual Reality Stroop Task (VRST) in active duty military.
    Armstrong CM; Reger GM; Edwards J; Rizzo AA; Courtney CG; Parsons TD
    J Clin Exp Neuropsychol; 2013; 35(2):113-23. PubMed ID: 23157431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cognitive Training With Head-Mounted Display Virtual Reality in Neurorehabilitation: Pilot Randomized Controlled Trial.
    Specht J; Stegmann B; Gross H; Krakow K
    JMIR Serious Games; 2023 Jul; 11():e45816. PubMed ID: 37477957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multimodal immersive trail making-virtual reality paradigm to study cognitive-motor interactions.
    Plotnik M; Ben-Gal O; Doniger GM; Gottlieb A; Bahat Y; Cohen M; Kimel-Naor S; Zeilig G; Beeri MS
    J Neuroeng Rehabil; 2021 May; 18(1):82. PubMed ID: 34001179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute VR competitive cycling exercise enhanced cortical activations and brain functional network efficiency in MA-dependent individuals.
    Qi L; Yin Y; Bu L; Tang Z; Tang L; Dong G
    Neurosci Lett; 2021 Jul; 757():135969. PubMed ID: 34023411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility and Tolerability of a Culture-Based Virtual Reality (VR) Training Program in Patients with Mild Cognitive Impairment: A Randomized Controlled Pilot Study.
    Park JH; Liao Y; Kim DR; Song S; Lim JH; Park H; Lee Y; Park KW
    Int J Environ Res Public Health; 2020 Apr; 17(9):. PubMed ID: 32349413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How Exergaming with Virtual Reality Enhances Specific Cognitive and Visuo-Motor Abilities: An Explorative Study.
    Grosprêtre S; Marcel-Millet P; Eon P; Wollesen B
    Cogn Sci; 2023 Apr; 47(4):e13278. PubMed ID: 37029516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Virtual reality gaming as a neurorehabilitation tool for brain injuries in adults: A systematic review.
    Aulisio MC; Han DY; Glueck AC
    Brain Inj; 2020 Aug; 34(10):1322-1330. PubMed ID: 32791020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virtual apartment stroop task: Comparison with computerized and traditional stroop tasks.
    Parsons TD; Barnett MD
    J Neurosci Methods; 2018 Nov; 309():35-40. PubMed ID: 30144496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immersive virtual reality in traumatic brain injury rehabilitation: A literature review.
    Aida J; Chau B; Dunn J
    NeuroRehabilitation; 2018; 42(4):441-448. PubMed ID: 29660958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three Virtual Reality Environments for the Assessment of Executive Functioning Using Performance Scores and Kinematics: An Embodied and Ecological Approach to Cognition.
    Ribeiro N; Vigier T; Han J; Kwon GH; Choi H; Bulteau S; Prié Y
    Cyberpsychol Behav Soc Netw; 2024 Feb; 27(2):127-134. PubMed ID: 38358831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.