These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 29254114)

  • 41. Bimodal Virtual Reality Stroop for Assessing Distractor Inhibition in Autism Spectrum Disorders.
    Parsons TD; Carlew AR
    J Autism Dev Disord; 2016 Apr; 46(4):1255-67. PubMed ID: 26614084
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enduring cognitive dysfunction in unipolar major depression: a test-retest study using the Stroop paradigm.
    Hammar A; Sørensen L; Ardal G; Oedegaard KJ; Kroken R; Roness A; Lund A
    Scand J Psychol; 2010 Aug; 51(4):304-8. PubMed ID: 20042028
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A pilot study and brief overview of rehabilitation via virtual environment in patients suffering from dementia.
    Fasilis T; Patrikelis P; Siatouni A; Alexoudi A; Veretzioti A; Zachou L; Gatzonis SS
    Psychiatriki; 2018; 29(1):42-51. PubMed ID: 29754119
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Immersive virtual reality as a teaching tool for neuroanatomy.
    Stepan K; Zeiger J; Hanchuk S; Del Signore A; Shrivastava R; Govindaraj S; Iloreta A
    Int Forum Allergy Rhinol; 2017 Oct; 7(10):1006-1013. PubMed ID: 28719062
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Clinical Utility of Virtual Reality in Neurorehabilitation: A Systematic Review.
    Massetti T; da Silva TD; Crocetta TB; Guarnieri R; de Freitas BL; Bianchi Lopes P; Watson S; Tonks J; de Mello Monteiro CB
    J Cent Nerv Syst Dis; 2018; 10():1179573518813541. PubMed ID: 30515028
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Individual but not fragile: individual differences in task control predict Stroop facilitation.
    Kalanthroff E; Henik A
    Conscious Cogn; 2013 Jun; 22(2):413-9. PubMed ID: 23416541
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cognitive training in an everyday-like virtual reality enhances visual-spatial memory capacities in stroke survivors with visual field defects.
    Dehn LB; Piefke M; Toepper M; Kohsik A; Rogalewski A; Dyck E; Botsch M; Schäbitz WR
    Top Stroke Rehabil; 2020 Sep; 27(6):442-452. PubMed ID: 31960760
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The State of Behavior Change Techniques in Virtual Reality Rehabilitation of Neurologic Populations.
    Felsberg DT; Maher JP; Rhea CK
    Front Psychol; 2019; 10():979. PubMed ID: 31139106
    [No Abstract]   [Full Text] [Related]  

  • 49. Validation of an immersive virtual reality system for training near and far space neglect in individuals with stroke: a pilot study.
    Yasuda K; Muroi D; Ohira M; Iwata H
    Top Stroke Rehabil; 2017 Oct; 24(7):533-538. PubMed ID: 28701101
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Desires for beverages and liking of skin care product odors in imaginative and immersive virtual reality beach contexts.
    Andersen INSK; Kraus AA; Ritz C; Bredie WLP
    Food Res Int; 2019 Mar; 117():10-18. PubMed ID: 30736918
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development and initial assessment of a new paradigm for assessing cognitive and motor inhibition: the bimodal virtual-reality Stroop.
    Henry M; Joyal CC; Nolin P
    J Neurosci Methods; 2012 Sep; 210(2):125-31. PubMed ID: 22897988
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of task repetition but no transfer of inhibitory control training in healthy adults.
    Talanow T; Ettinger U
    Acta Psychol (Amst); 2018 Jun; 187():37-53. PubMed ID: 29772392
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Virtual Reality Stroop Task for neurocognitive assessment.
    Parsons TD; Courtney CG; Arizmendi B; Dawson M
    Stud Health Technol Inform; 2011; 163():433-9. PubMed ID: 21335835
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Critical Review of the Use of Virtual Reality in Construction Engineering Education and Training.
    Wang P; Wu P; Wang J; Chi HL; Wang X
    Int J Environ Res Public Health; 2018 Jun; 15(6):. PubMed ID: 29890627
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Virtual Reality-Based Cognitive Stimulation to Improve Cognitive Functioning in Community Elderly: A Controlled Study.
    Gamito P; Oliveira J; Alves C; Santos N; Coelho C; Brito R
    Cyberpsychol Behav Soc Netw; 2020 Mar; 23(3):150-156. PubMed ID: 32031888
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Virtual reality exercise improves mobility after stroke: an inpatient randomized controlled trial.
    McEwen D; Taillon-Hobson A; Bilodeau M; Sveistrup H; Finestone H
    Stroke; 2014 Jun; 45(6):1853-5. PubMed ID: 24763929
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Virtual and augmented reality in the treatment of phantom limb pain: A literature review.
    Dunn J; Yeo E; Moghaddampour P; Chau B; Humbert S
    NeuroRehabilitation; 2017; 40(4):595-601. PubMed ID: 28211829
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Prefrontal cortex-mediated executive function as assessed by Stroop task performance associates with weight loss among overweight and obese adolescents and young adults.
    Xu X; Deng ZY; Huang Q; Zhang WX; Qi CZ; Huang JA
    Behav Brain Res; 2017 Mar; 321():240-248. PubMed ID: 28043899
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Working memory capacity and Stroop interference: global versus local indices of executive control.
    Meier ME; Kane MJ
    J Exp Psychol Learn Mem Cogn; 2013 May; 39(3):748-759. PubMed ID: 22774858
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Virtual Reality Applications for Neurological Disease: A Review.
    Schiza E; Matsangidou M; Neokleous K; Pattichis CS
    Front Robot AI; 2019; 6():100. PubMed ID: 33501115
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.