These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 29254984)

  • 1. Phytochrome, Carbon Sensing, Metabolism, and Plant Growth Plasticity.
    Krahmer J; Ganpudi A; Abbas A; Romanowski A; Halliday KJ
    Plant Physiol; 2018 Feb; 176(2):1039-1048. PubMed ID: 29254984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phy tunes: phosphorylation status and phytochrome-mediated signaling.
    Rubio V; Deng XW
    Cell; 2005 Feb; 120(3):290-2. PubMed ID: 15707886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light perception in plants: cytokinins and red light join forces to keep phytochrome B active.
    Fankhauser C
    Trends Plant Sci; 2002 Apr; 7(4):143-5. PubMed ID: 11950603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Dynamic Plant: Capture, Transformation, and Management of Energy.
    Bailey-Serres J; Pierik R; Ruban A; Wingler A
    Plant Physiol; 2018 Feb; 176(2):961-966. PubMed ID: 29438068
    [No Abstract]   [Full Text] [Related]  

  • 5. Phytochrome-specific type 5 phosphatase controls light signal flux by enhancing phytochrome stability and affinity for a signal transducer.
    Ryu JS; Kim JI; Kunkel T; Kim BC; Cho DS; Hong SH; Kim SH; Fernández AP; Kim Y; Alonso JM; Ecker JR; Nagy F; Lim PO; Song PS; Schäfer E; Nam HG
    Cell; 2005 Feb; 120(3):395-406. PubMed ID: 15707897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoreceptors UVR8 and phytochrome B cooperate to optimize plant growth and defense in patchy canopies.
    Mazza CA; Ballaré CL
    New Phytol; 2015 Jul; 207(1):4-9. PubMed ID: 25659974
    [No Abstract]   [Full Text] [Related]  

  • 7. CP3 is involved in negative regulation of phytochrome A signalling in Arabidopsis.
    Quinn MH; Oliverio K; Yanovsky MJ; Casal JJ
    Planta; 2002 Aug; 215(4):557-64. PubMed ID: 12172837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. β-carbonic anhydrases and carbonic ions uptake positively influence Arabidopsis photosynthesis, oxidative stress tolerance and growth in light dependent manner.
    Dąbrowska-Bronk J; Komar DN; Rusaczonek A; Kozłowska-Makulska A; Szechyńska-Hebda M; Karpiński S
    J Plant Physiol; 2016 Sep; 203():44-54. PubMed ID: 27316917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytochromes: More Than Meets the Eye.
    Rensing SA; Sheerin DJ; Hiltbrunner A
    Trends Plant Sci; 2016 Jul; 21(7):543-546. PubMed ID: 27270335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant phototransduction. Phytochrome signal transduction.
    Chory J
    Curr Biol; 1994 Sep; 4(9):844-6. PubMed ID: 7820558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diverse photoreceptors and light responses in plants.
    Kong SG; Okajima K
    J Plant Res; 2016 Mar; 129(2):111-4. PubMed ID: 26860414
    [No Abstract]   [Full Text] [Related]  

  • 12. Effect of preillumination with red light on photosynthetic parameters and oxidant-/antioxidant balance in Arabidopsis thaliana in response to UV-A.
    Kreslavski VD; Shirshikova GN; Lyubimov VY; Shmarev AN; Boutanaev AM; Kosobryukhov AA; Schmitt FJ; Friedrich T; Allakhverdiev SI
    J Photochem Photobiol B; 2013 Oct; 127():229-36. PubMed ID: 24080425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of light and auxin signaling.
    Halliday KJ; Martínez-García JF; Josse EM
    Cold Spring Harb Perspect Biol; 2009 Dec; 1(6):a001586. PubMed ID: 20457562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New insights of red light-induced development.
    Viczián A; Klose C; Ádám É; Nagy F
    Plant Cell Environ; 2017 Nov; 40(11):2457-2468. PubMed ID: 27943362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Type-f thioredoxins have a role in the short-term activation of carbon metabolism and their loss affects growth under short-day conditions in Arabidopsis thaliana.
    Naranjo B; Diaz-Espejo A; Lindahl M; Cejudo FJ
    J Exp Bot; 2016 Mar; 67(6):1951-64. PubMed ID: 26842981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light signal transduction in higher plants.
    Chen M; Chory J; Fankhauser C
    Annu Rev Genet; 2004; 38():87-117. PubMed ID: 15568973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling of phytochrome B to the control of hypocotyl growth in Arabidopsis.
    Casal JJ
    Planta; 1995; 196(1):23-9. PubMed ID: 7767236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of phytochrome interacting factor 3 in phytochrome-mediated light signaling.
    Park E; Kim J; Lee Y; Shin J; Oh E; Chung WI; Liu JR; Choi G
    Plant Cell Physiol; 2004 Aug; 45(8):968-75. PubMed ID: 15356322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular mechanisms for mediating light-dependent nucleo/cytoplasmic partitioning of phytochrome photoreceptors.
    Klose C; Viczián A; Kircher S; Schäfer E; Nagy F
    New Phytol; 2015 May; 206(3):965-71. PubMed ID: 26042244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constitutive photomorphogenesis 1 and multiple photoreceptors control degradation of phytochrome interacting factor 3, a transcription factor required for light signaling in Arabidopsis.
    Bauer D; Viczián A; Kircher S; Nobis T; Nitschke R; Kunkel T; Panigrahi KC; Adám E; Fejes E; Schäfer E; Nagy F
    Plant Cell; 2004 Jun; 16(6):1433-45. PubMed ID: 15155879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.