These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 29255171)

  • 1. ERBB3 and NGFR mark a distinct skeletal muscle progenitor cell in human development and hPSCs.
    Hicks MR; Hiserodt J; Paras K; Fujiwara W; Eskin A; Jan M; Xi H; Young CS; Evseenko D; Nelson SF; Spencer MJ; Handel BV; Pyle AD
    Nat Cell Biol; 2018 Jan; 20(1):46-57. PubMed ID: 29255171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myogenic Progenitor Cell Lineage Specification by CRISPR/Cas9-Based Transcriptional Activators.
    Kwon JB; Vankara A; Ettyreddy AR; Bohning JD; Gersbach CA
    Stem Cell Reports; 2020 May; 14(5):755-769. PubMed ID: 32330446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9 editing of directly reprogrammed myogenic progenitors restores dystrophin expression in a mouse model of muscular dystrophy.
    Domenig SA; Bundschuh N; Lenardič A; Ghosh A; Kim I; Qabrati X; D'Hulst G; Bar-Nur O
    Stem Cell Reports; 2022 Feb; 17(2):321-336. PubMed ID: 34995499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Restoration of Dystrophin Protein Expression by Exon Skipping Utilizing CRISPR-Cas9 in Myoblasts Derived from DMD Patient iPS Cells.
    Ifuku M; Iwabuchi KA; Tanaka M; Lung MSY; Hotta A
    Methods Mol Biol; 2018; 1828():191-217. PubMed ID: 30171543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SIX1+PAX3+ identify a progenitor for myogenic lineage commitment from hPSCs.
    Jaime OG; Arias J; Pavani S; Pyle AD; Hicks MR
    Development; 2023 Jul; 150(14):. PubMed ID: 37366057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas9-Based Dystrophin Restoration Reveals a Novel Role for Dystrophin in Bioenergetics and Stress Resistance of Muscle Progenitors.
    Matre PR; Mu X; Wu J; Danila D; Hall MA; Kolonin MG; Darabi R; Huard J
    Stem Cells; 2019 Dec; 37(12):1615-1628. PubMed ID: 31574188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differentiation of the human PAX7-positive myogenic precursors/satellite cell lineage
    Al Tanoury Z; Rao J; Tassy O; Gobert B; Gapon S; Garnier JM; Wagner E; Hick A; Hall A; Gussoni E; Pourquié O
    Development; 2020 Jun; 147(12):. PubMed ID: 32541004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient Muscle Regeneration by Human PSC-Derived CD82
    Xie N; Chu SN; Schultz CB; Chan SSK
    Cells; 2023 Jan; 12(3):. PubMed ID: 36766703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Skeletal Muscle Differentiation on a Chip Shows Human Donor Mesoangioblasts' Efficiency in Restoring Dystrophin in a Duchenne Muscular Dystrophy Model.
    Serena E; Zatti S; Zoso A; Lo Verso F; Tedesco FS; Cossu G; Elvassore N
    Stem Cells Transl Med; 2016 Dec; 5(12):1676-1683. PubMed ID: 27502519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Somatic gene editing ameliorates skeletal and cardiac muscle failure in pig and human models of Duchenne muscular dystrophy.
    Moretti A; Fonteyne L; Giesert F; Hoppmann P; Meier AB; Bozoglu T; Baehr A; Schneider CM; Sinnecker D; Klett K; Fröhlich T; Rahman FA; Haufe T; Sun S; Jurisch V; Kessler B; Hinkel R; Dirschinger R; Martens E; Jilek C; Graf A; Krebs S; Santamaria G; Kurome M; Zakhartchenko V; Campbell B; Voelse K; Wolf A; Ziegler T; Reichert S; Lee S; Flenkenthaler F; Dorn T; Jeremias I; Blum H; Dendorfer A; Schnieke A; Krause S; Walter MC; Klymiuk N; Laugwitz KL; Wolf E; Wurst W; Kupatt C
    Nat Med; 2020 Feb; 26(2):207-214. PubMed ID: 31988462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression patterns of FSHD-causing DUX4 and myogenic transcription factors PAX3 and PAX7 are spatially distinct in differentiating human stem cell cultures.
    Haynes P; Kernan K; Zhou SL; Miller DG
    Skelet Muscle; 2017 Jun; 7(1):13. PubMed ID: 28637492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Mini-Dystrophin on Dystrophin-Deficient, Human Skeletal Muscle-Derived Cells.
    Meng J; Counsell J; Morgan JE
    Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 32998454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of CCAAT/Enhancer-Binding Protein β Expression With the Phosphodiesterase Inhibitor Isobutylmethylxanthine Improves Myoblast Engraftment Into Dystrophic Muscle.
    Lala-Tabbert N; Fu D; Wiper-Bergeron N
    Stem Cells Transl Med; 2016 Apr; 5(4):500-10. PubMed ID: 26941360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective regeneration of dystrophic muscle using autologous iPSC-derived progenitors with CRISPR-Cas9 mediated precise correction.
    Hagan M; Ashraf M; Kim IM; Weintraub NL; Tang Y
    Med Hypotheses; 2018 Jan; 110():97-100. PubMed ID: 29317080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autologous skeletal muscle derived cells expressing a novel functional dystrophin provide a potential therapy for Duchenne Muscular Dystrophy.
    Meng J; Counsell JR; Reza M; Laval SH; Danos O; Thrasher A; Lochmüller H; Muntoni F; Morgan JE
    Sci Rep; 2016 Jan; 6():19750. PubMed ID: 26813695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9.
    Li HL; Fujimoto N; Sasakawa N; Shirai S; Ohkame T; Sakuma T; Tanaka M; Amano N; Watanabe A; Sakurai H; Yamamoto T; Yamanaka S; Hotta A
    Stem Cell Reports; 2015 Jan; 4(1):143-154. PubMed ID: 25434822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A muscle fatigue-like contractile decline was recapitulated using skeletal myotubes from Duchenne muscular dystrophy patient-derived iPSCs.
    Uchimura T; Asano T; Nakata T; Hotta A; Sakurai H
    Cell Rep Med; 2021 Jun; 2(6):100298. PubMed ID: 34195678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of Pax7 expressing myogenic cells in zebrafish muscle development, injury, and models of disease.
    Seger C; Hargrave M; Wang X; Chai RJ; Elworthy S; Ingham PW
    Dev Dyn; 2011 Nov; 240(11):2440-51. PubMed ID: 21954137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transplantation of Dystrophin Expressing Chimeric Human Cells of Myoblast/Mesenchymal Stem Cell Origin Improves Function in Duchenne Muscular Dystrophy Model.
    Siemionow M; Szilagyi E; Cwykiel J; Domaszewska-Szostek A; Heydemann A; Garcia-Martinez J; Siemionow K
    Stem Cells Dev; 2021 Feb; 30(4):190-202. PubMed ID: 33349121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering human pluripotent stem cells into a functional skeletal muscle tissue.
    Rao L; Qian Y; Khodabukus A; Ribar T; Bursac N
    Nat Commun; 2018 Jan; 9(1):126. PubMed ID: 29317646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.