These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 29255412)
1. Hierarchical Compliance Control of a Soft Ankle Rehabilitation Robot Actuated by Pneumatic Muscles. Liu Q; Liu A; Meng W; Ai Q; Xie SQ Front Neurorobot; 2017; 11():64. PubMed ID: 29255412 [TBL] [Abstract][Full Text] [Related]
2. Disturbance-Estimated Adaptive Backstepping Sliding Mode Control of a Pneumatic Muscles-Driven Ankle Rehabilitation Robot. Ai Q; Zhu C; Zuo J; Meng W; Liu Q; Xie SQ; Yang M Sensors (Basel); 2017 Dec; 18(1):. PubMed ID: 29283406 [TBL] [Abstract][Full Text] [Related]
3. State of the art in parallel ankle rehabilitation robot: a systematic review. Dong M; Zhou Y; Li J; Rong X; Fan W; Zhou X; Kong Y J Neuroeng Rehabil; 2021 Mar; 18(1):52. PubMed ID: 33743757 [TBL] [Abstract][Full Text] [Related]
4. A Lower Limb Rehabilitation Assistance Training Robot System Driven by an Innovative Pneumatic Artificial Muscle System. Tsai TC; Chiang MH Soft Robot; 2023 Feb; 10(1):1-16. PubMed ID: 35196171 [TBL] [Abstract][Full Text] [Related]
5. Human-Robot Cooperative Strength Training Based on Robust Admittance Control Strategy. Lin M; Wang H; Yang C; Liu W; Niu J; Vladareanu L Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298097 [TBL] [Abstract][Full Text] [Related]
6. Design and testing of a soft parallel robot based on pneumatic artificial muscles for wrist rehabilitation. Wang Y; Xu Q Sci Rep; 2021 Jan; 11(1):1273. PubMed ID: 33446771 [TBL] [Abstract][Full Text] [Related]
7. Adaptive Admittance Control for an Ankle Exoskeleton Using an EMG-Driven Musculoskeletal Model. Yao S; Zhuang Y; Li Z; Song R Front Neurorobot; 2018; 12():16. PubMed ID: 29692719 [TBL] [Abstract][Full Text] [Related]
8. Adaptive model-based assistive control for pneumatic direct driven soft rehabilitation robots. Wilkening A; Ivlev O IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650354. PubMed ID: 24187173 [TBL] [Abstract][Full Text] [Related]
9. A Learning-Based Hierarchical Control Scheme for an Exoskeleton Robot in Human-Robot Cooperative Manipulation. Deng M; Li Z; Kang Y; Chen CLP; Chu X IEEE Trans Cybern; 2020 Jan; 50(1):112-125. PubMed ID: 30183653 [TBL] [Abstract][Full Text] [Related]
10. Voluntary Assist-as-Needed Controller for an Ankle Power-Assist Rehabilitation Robot. Yang R; Shen Z; Lyu Y; Zhuang Y; Li L; Song R IEEE Trans Biomed Eng; 2023 Jun; 70(6):1795-1803. PubMed ID: 37015472 [TBL] [Abstract][Full Text] [Related]
11. [Voluntary and Adaptive Control Strategy for Ankle Rehabilitation Robot]. Shen Z; Zhang L; Su Y; Xing H; Li B Zhongguo Yi Liao Qi Xie Za Zhi; 2024 Jul; 48(4):385-391. PubMed ID: 39155250 [TBL] [Abstract][Full Text] [Related]
12. Development, Dynamic Modeling, and Multi-Modal Control of a Therapeutic Exoskeleton for Upper Limb Rehabilitation Training. Wu Q; Wu H Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30356005 [TBL] [Abstract][Full Text] [Related]
13. Assisting Forearm Function in Children With Movement Disorders Realmuto J; Sanger TD Front Robot AI; 2022; 9():877041. PubMed ID: 35783026 [TBL] [Abstract][Full Text] [Related]
14. Design of a biped robot actuated by pneumatic artificial muscles. Liu Y; Zang X; Liu X; Wang L Biomed Mater Eng; 2015; 26 Suppl 1():S757-66. PubMed ID: 26406072 [TBL] [Abstract][Full Text] [Related]
15. Design and control of a lower limb rehabilitation robot considering undesirable torques of the patient's limb. Almaghout K; Tarvirdizadeh B; Alipour K; Hadi A Proc Inst Mech Eng H; 2020 Dec; 234(12):1457-1471. PubMed ID: 32777995 [TBL] [Abstract][Full Text] [Related]
16. Configuration-Dependent Optimal Impedance Control of an Upper Extremity Stroke Rehabilitation Manipulandum. Ghannadi B; Sharif Razavian R; McPhee J Front Robot AI; 2018; 5():124. PubMed ID: 33501003 [TBL] [Abstract][Full Text] [Related]
17. Path Planning and Impedance Control of a Soft Modular Exoskeleton for Coordinated Upper Limb Rehabilitation. Liu Q; Liu Y; Li Y; Zhu C; Meng W; Ai Q; Xie SQ Front Neurorobot; 2021; 15():745531. PubMed ID: 34790109 [TBL] [Abstract][Full Text] [Related]
18. Adaptive impedance control of a robotic orthosis for gait rehabilitation. Hussain S; Xie SQ; Jamwal PK IEEE Trans Cybern; 2013 Jun; 43(3):1025-34. PubMed ID: 23193241 [TBL] [Abstract][Full Text] [Related]
19. Development and Electromyographic Validation of a Compliant Human-Robot Interaction Controller for Cooperative and Personalized Neurorehabilitation. Dalla Gasperina S; Longatelli V; Braghin F; Pedrocchi A; Gandolla M Front Neurorobot; 2021; 15():734130. PubMed ID: 35115915 [TBL] [Abstract][Full Text] [Related]
20. Multi-mode adaptive control strategy for a lower limb rehabilitation robot. Liang X; Yan Y; Dai S; Guo Z; Li Z; Liu S; Su T Front Bioeng Biotechnol; 2024; 12():1392599. PubMed ID: 38817926 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]