These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 29255442)

  • 1. Sliding Mode Tracking Control of a Wire-Driven Upper-Limb Rehabilitation Robot with Nonlinear Disturbance Observer.
    Niu J; Yang Q; Wang X; Song R
    Front Neurol; 2017; 8():646. PubMed ID: 29255442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear disturbance observer based sliding mode control of a cable-driven rehabilitation robot.
    Niu J; Yang Q; Chen G; Song R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():664-669. PubMed ID: 28813896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corrigendum: Sliding Mode Tracking Control of a Wire-Driven Upper-Limb Rehabilitation Robot with Nonlinear Disturbance Observer.
    Niu J; Yang Q; Wang X; Song R
    Front Neurol; 2018; 9():511. PubMed ID: 29983702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disturbance-Estimated Adaptive Backstepping Sliding Mode Control of a Pneumatic Muscles-Driven Ankle Rehabilitation Robot.
    Ai Q; Zhu C; Zuo J; Meng W; Liu Q; Xie SQ; Yang M
    Sensors (Basel); 2017 Dec; 18(1):. PubMed ID: 29283406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust Sliding Mode Control of PMSM Based on a Rapid Nonlinear Tracking Differentiator and Disturbance Observer.
    Zhou Z; Zhang B; Mao D
    Sensors (Basel); 2018 Mar; 18(4):. PubMed ID: 29596387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Walking position commanded NAO robot using nonlinear disturbance observer-based fixed-time terminal sliding mode.
    Farhat M; Kali Y; Saad M; Rahman MH; Lopez-Herrejon RE
    ISA Trans; 2024 Mar; 146():592-602. PubMed ID: 38151448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonsingular recursive-structure sliding mode control for high-order nonlinear systems and an application in a wheeled mobile robot.
    Zhang H; Li B; Xiao B; Yang Y; Ling J
    ISA Trans; 2022 Nov; 130():553-564. PubMed ID: 35489816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Advanced Adaptive Control of Lower Limb Rehabilitation Robot.
    Du Y; Wang H; Qiu S; Yao W; Xie P; Chen X
    Front Robot AI; 2018; 5():116. PubMed ID: 33500995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observer-Based Adaptive Sliding Mode Compensation Position-Tracking Control for Drilling Tool Attitude Adjustment.
    Gu J; Wang X; Yan H; Tan C; Si L; Wang Z
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust Tracking Control of Wheeled Mobile Robot Based on Differential Flatness and Sliding Active Disturbance Rejection Control: Simulations and Experiments.
    Abadi A; Ayeb A; Labbadi M; Fofi D; Bakir T; Mekki H
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive fuzzy PID cross coupled control for multi-axis motion system based on sliding mode disturbance observation.
    Wang S; Chen Y; Zhang G
    Sci Prog; 2021; 104(2):368504211011847. PubMed ID: 33913385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robot-assisted training compared with an enhanced upper limb therapy programme and with usual care for upper limb functional limitation after stroke: the RATULS three-group RCT.
    Rodgers H; Bosomworth H; Krebs HI; van Wijck F; Howel D; Wilson N; Finch T; Alvarado N; Ternent L; Fernandez-Garcia C; Aird L; Andole S; Cohen DL; Dawson J; Ford GA; Francis R; Hogg S; Hughes N; Price CI; Turner DL; Vale L; Wilkes S; Shaw L
    Health Technol Assess; 2020 Oct; 24(54):1-232. PubMed ID: 33140719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robustness and Tracking Performance Evaluation of PID Motion Control of 7 DoF Anthropomorphic Exoskeleton Robot Assisted Upper Limb Rehabilitation.
    Ahmed T; Islam MR; Brahmi B; Rahman MH
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive backstepping sliding mode control of permanent magnet spherical motor based on disturbance observer.
    Lu Z; Li G; Wang Q; Zhou S; Gao S
    Rev Sci Instrum; 2022 Jun; 93(6):065002. PubMed ID: 35778051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development, Dynamic Modeling, and Multi-Modal Control of a Therapeutic Exoskeleton for Upper Limb Rehabilitation Training.
    Wu Q; Wu H
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30356005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel adaptive impedance control for exoskeleton robot for rehabilitation using a nonlinear time-delay disturbance observer.
    Brahmi B; Driscoll M; El Bojairami IK; Saad M; Brahmi A
    ISA Trans; 2021 Feb; 108():381-392. PubMed ID: 32888727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Terminal sliding mode tracking control for a class of SISO uncertain nonlinear systems.
    Chen M; Wu QX; Cui RX
    ISA Trans; 2013 Mar; 52(2):198-206. PubMed ID: 23127620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical multiloop MPC scheme for robot manipulators with nonlinear disturbance observer.
    Li X; Gu J; Huang Z; Ji C; Tang S
    Math Biosci Eng; 2022 Aug; 19(12):12601-12616. PubMed ID: 36654013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite-Time Dynamic Tracking Control of Parallel Robots with Uncertainties and Input Saturation.
    Ye M; Gao G; Zhong J; Qin Q
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33923303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive fractional-order sliding-mode disturbance observer-based robust theoretical frequency controller applied to hybrid wind-diesel power system.
    Guha D; Roy PK; Banerjee S
    ISA Trans; 2023 Feb; 133():160-183. PubMed ID: 35811159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.