These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 29255481)

  • 1. Re-using biological devices: a model-aided analysis of interconnected transcriptional cascades designed from the bottom-up.
    Pasotti L; Bellato M; Casanova M; Zucca S; Cusella De Angelis MG; Magni P
    J Biol Eng; 2017; 11():50. PubMed ID: 29255481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bottom-up engineering of biological systems through standard bricks: a modularity study on basic parts and devices.
    Pasotti L; Politi N; Zucca S; Cusella De Angelis MG; Magni P
    PLoS One; 2012; 7(7):e39407. PubMed ID: 22911685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling the effects of cell-to-cell variability on the output of interconnected gene networks in bacterial populations.
    Politi N; Pasotti L; Zucca S; Magni P
    BMC Syst Biol; 2015; 9 Suppl 3(Suppl 3):S6. PubMed ID: 26050995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rational design of modular circuits for gene transcription: A test of the bottom-up approach.
    Ceroni F; Furini S; Giordano E; Cavalcanti S
    J Biol Eng; 2010 Nov; 4():14. PubMed ID: 21070658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances and computational tools towards predictable design in biological engineering.
    Pasotti L; Zucca S
    Comput Math Methods Med; 2014; 2014():369681. PubMed ID: 25161694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A synthetic post-transcriptional controller to explore the modular design of gene circuits.
    Ceroni F; Furini S; Stefan A; Hochkoeppler A; Giordano E
    ACS Synth Biol; 2012 May; 1(5):163-71. PubMed ID: 23651154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR Interference Modules as Low-Burden Logic Inverters in Synthetic Circuits.
    Bellato M; Frusteri Chiacchiera A; Salibi E; Casanova M; De Marchi D; Castagliuolo I; Cusella De Angelis MG; Magni P; Pasotti L
    Front Bioeng Biotechnol; 2021; 9():743950. PubMed ID: 35155399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic programs constructed from layered logic gates in single cells.
    Moon TS; Lou C; Tamsir A; Stanton BC; Voigt CA
    Nature; 2012 Nov; 491(7423):249-53. PubMed ID: 23041931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dealing with the genetic load in bacterial synthetic biology circuits: convergences with the Ohm's law.
    Carbonell-Ballestero M; Garcia-Ramallo E; Montañez R; Rodriguez-Caso C; Macía J
    Nucleic Acids Res; 2016 Jan; 44(1):496-507. PubMed ID: 26656950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-objective optimization framework to obtain model-based guidelines for tuning biological synthetic devices: an adaptive network case.
    Boada Y; Reynoso-Meza G; Picó J; Vignoni A
    BMC Syst Biol; 2016 Mar; 10():27. PubMed ID: 26968941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Synthetic Close-Loop Controller Circuit for the Regulation of an Extracellular Molecule by Engineered Bacteria.
    Pasotti L; Bellato M; Politi N; Casanova M; Zucca S; Cusella De Angelis MG; Magni P
    IEEE Trans Biomed Circuits Syst; 2019 Feb; 13(1):248-258. PubMed ID: 30489274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complex cellular logic computation using ribocomputing devices.
    Green AA; Kim J; Ma D; Silver PA; Collins JJ; Yin P
    Nature; 2017 Aug; 548(7665):117-121. PubMed ID: 28746304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology.
    Wang B; Kitney RI; Joly N; Buck M
    Nat Commun; 2011 Oct; 2():508. PubMed ID: 22009040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Programmable nanowire circuits for nanoprocessors.
    Yan H; Choe HS; Nam S; Hu Y; Das S; Klemic JF; Ellenbogen JC; Lieber CM
    Nature; 2011 Feb; 470(7333):240-4. PubMed ID: 21307937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scaling up genetic circuit design for cellular computing: advances and prospects.
    Xiang Y; Dalchau N; Wang B
    Nat Comput; 2018; 17(4):833-853. PubMed ID: 30524216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Develop reusable and combinable designs for transcriptional logic gates.
    Zhan J; Ding B; Ma R; Ma X; Su X; Zhao Y; Liu Z; Wu J; Liu H
    Mol Syst Biol; 2010 Jul; 6():388. PubMed ID: 20631682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of an inducible promoter in different DNA copy number conditions.
    Zucca S; Pasotti L; Mazzini G; De Angelis MG; Magni P
    BMC Bioinformatics; 2012 Mar; 13 Suppl 4(Suppl 4):S11. PubMed ID: 22536957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Qualitative models and experimental investigation of chaotic NOR gates and set/reset flip-flops.
    Rahman A; Jordan I; Blackmore D
    Proc Math Phys Eng Sci; 2018 Jan; 474(2209):20170111. PubMed ID: 29434498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic in vitro transcriptional oscillators.
    Kim J; Winfree E
    Mol Syst Biol; 2011 Feb; 7():465. PubMed ID: 21283141
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.