These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 29255647)

  • 1. Shift of symbiont communities in
    Yorifuji M; Harii S; Nakamura R; Fudo M
    PeerJ; 2017; 5():e4055. PubMed ID: 29255647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals.
    Silverstein RN; Cunning R; Baker AC
    Glob Chang Biol; 2015 Jan; 21(1):236-49. PubMed ID: 25099991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the role of historical temperature regime and algal symbionts on the heat tolerance of coral juveniles.
    Quigley KM; Randall CJ; van Oppen MJH; Bay LK
    Biol Open; 2020 Jan; 9(1):. PubMed ID: 31915210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different Stress Tolerances of Juveniles of the Coral
    Yuyama I; Nakamura T; Higuchi T; Hidaka M
    Zool Stud; 2016; 55():e19. PubMed ID: 31966164
    [No Abstract]   [Full Text] [Related]  

  • 5. Responses of coral-associated bacterial communities to heat stress differ with Symbiodinium type on the same coral host.
    Littman RA; Bourne DG; Willis BL
    Mol Ecol; 2010 May; 19(9):1978-90. PubMed ID: 20529072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Algal symbiont type affects gene expression in juveniles of the coral Acropora tenuis exposed to thermal stress.
    Yuyama I; Harii S; Hidaka M
    Mar Environ Res; 2012 May; 76():41-7. PubMed ID: 22001189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrate competition in a coral symbiosis varies with temperature among Symbiodinium clades.
    Baker DM; Andras JP; Jordán-Garza AG; Fogel ML
    ISME J; 2013 Jun; 7(6):1248-51. PubMed ID: 23407311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of light and temperature on the uptake of algal symbionts by coral juveniles.
    Abrego D; Willis BL; van Oppen MJ
    PLoS One; 2012; 7(11):e50311. PubMed ID: 23185603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactions of juvenile coral to three years of consecutive thermal stress.
    Hazraty-Kari S; Morita M; Tavakoli-Kolour P; Nakamura T; Harii S
    Sci Total Environ; 2023 Mar; 863():161227. PubMed ID: 36586691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly infectious symbiont dominates initial uptake in coral juveniles.
    Abrego D; VAN Oppen MJ; Willis BL
    Mol Ecol; 2009 Aug; 18(16):3518-31. PubMed ID: 19627495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein evolution in two co-occurring types of Symbiodinium: an exploration into the genetic basis of thermal tolerance in Symbiodinium clade D.
    Ladner JT; Barshis DJ; Palumbi SR
    BMC Evol Biol; 2012 Nov; 12():217. PubMed ID: 23145489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response of resistant larvae of the coral Acropora tenuis to future thermal stress.
    Hazraty-Kari S; Morita M; Tavakoli-Kolour P; Harii S
    Mar Pollut Bull; 2023 Jul; 192():115060. PubMed ID: 37207392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Onset of algal endosymbiont specificity varies among closely related species of Acropora corals during early ontogeny.
    Abrego D; VAN Oppen MJ; Willis BL
    Mol Ecol; 2009 Aug; 18(16):3532-43. PubMed ID: 19627494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential coral bleaching-Contrasting the activity and response of enzymatic antioxidants in symbiotic partners under thermal stress.
    Krueger T; Hawkins TD; Becker S; Pontasch S; Dove S; Hoegh-Guldberg O; Leggat W; Fisher PL; Davy SK
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Dec; 190():15-25. PubMed ID: 26310104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corals in the hottest reefs in the world exhibit symbiont fidelity not flexibility.
    Howells EJ; Bauman AG; Vaughan GO; Hume BCC; Voolstra CR; Burt JA
    Mol Ecol; 2020 Mar; 29(5):899-911. PubMed ID: 32017263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The roles and interactions of symbiont, host and environment in defining coral fitness.
    Mieog JC; Olsen JL; Berkelmans R; Bleuler-Martinez SA; Willis BL; van Oppen MJ
    PLoS One; 2009 Jul; 4(7):e6364. PubMed ID: 19629182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential impact of heat stress on reef-building corals under different light conditions.
    Rosic N; Rémond C; Mello-Athayde MA
    Mar Environ Res; 2020 Jun; 158():104947. PubMed ID: 32250839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid thermal adaptation in photosymbionts of reef-building corals.
    Chakravarti LJ; Beltran VH; van Oppen MJH
    Glob Chang Biol; 2017 Nov; 23(11):4675-4688. PubMed ID: 28447372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Symbiodinium clade C dominates zooxanthellate corals (Scleractinia) in the temperate region of Japan.
    Lien YT; Fukami H; Yamashita Y
    Zoolog Sci; 2012 Mar; 29(3):173-80. PubMed ID: 22379984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specificity is rarely absolute in coral-algal symbiosis: implications for coral response to climate change.
    Silverstein RN; Correa AM; Baker AC
    Proc Biol Sci; 2012 Jul; 279(1738):2609-18. PubMed ID: 22367985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.