These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 29255800)

  • 1. Elastic properties of silicate melts: Implications for low velocity zones at the lithosphere-asthenosphere boundary.
    Clark AN; Lesher CE
    Sci Adv; 2017 Dec; 3(12):e1701312. PubMed ID: 29255800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seismic evidence for sharp lithosphere-asthenosphere boundaries of oceanic plates.
    Kawakatsu H; Kumar P; Takei Y; Shinohara M; Kanazawa T; Araki E; Suyehiro K
    Science; 2009 Apr; 324(5926):499-502. PubMed ID: 19390042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seismic evidence for melt-rich lithosphere-asthenosphere boundary beneath young slab at Cascadia.
    Wang X; Chen L; Wang K; Chen QF; Zhan Z; Yang J
    Nat Commun; 2024 Apr; 15(1):3504. PubMed ID: 38664398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A sharp lithosphere-asthenosphere boundary imaged beneath eastern North America.
    Rychert CA; Fischer KM; Rondenay S
    Nature; 2005 Jul; 436(7050):542-5. PubMed ID: 16049485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Melt-rich channel observed at the lithosphere-asthenosphere boundary.
    Naif S; Key K; Constable S; Evans RL
    Nature; 2013 Mar; 495(7441):356-9. PubMed ID: 23518564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental constraints on the electrical anisotropy of the lithosphere-asthenosphere system.
    Pommier A; Leinenweber K; Kohlstedt DL; Qi C; Garnero EJ; Mackwell SJ; Tyburczy JA
    Nature; 2015 Jun; 522(7555):202-6. PubMed ID: 26062512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution seismic constraints on flow dynamics in the oceanic asthenosphere.
    Lin PY; Gaherty JB; Jin G; Collins JA; Lizarralde D; Evans RL; Hirth G
    Nature; 2016 Jul; 535(7613):538-41. PubMed ID: 27383792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Gutenberg discontinuity: melt at the lithosphere-asthenosphere boundary.
    Schmerr N
    Science; 2012 Mar; 335(6075):1480-3. PubMed ID: 22442480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seismological constraints on a possible plume root at the core-mantle boundary.
    Rost S; Garnero EJ; Williams Q; Manga M
    Nature; 2005 Jun; 435(7042):666-9. PubMed ID: 15931220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for frozen melts in the mid-lithosphere detected from active-source seismic data.
    Ohira A; Kodaira S; Nakamura Y; Fujie G; Arai R; Miura S
    Sci Rep; 2017 Nov; 7(1):15770. PubMed ID: 29150652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of water on seismic attenuation of the upper mantle: The origin of the sharp lithosphere-asthenosphere boundary.
    Liu C; Yoshino T; Yamazaki D; Tsujino N; Gomi H; Sakurai M; Zhang Y; Wang R; Guan L; Lau K; Tange Y; Higo Y
    Proc Natl Acad Sci U S A; 2023 Aug; 120(32):e2221770120. PubMed ID: 37523543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental evidence supports mantle partial melting in the asthenosphere.
    Chantel J; Manthilake G; Andrault D; Novella D; Yu T; Wang Y
    Sci Adv; 2016 May; 2(5):e1600246. PubMed ID: 27386548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compressibility of water in magma and the prediction of density crossovers in mantle differentiation.
    Agee CB
    Philos Trans A Math Phys Eng Sci; 2008 Nov; 366(1883):4239-52. PubMed ID: 18826929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox-influenced seismic properties of upper-mantle olivine.
    Cline Ii CJ; Faul UH; David EC; Berry AJ; Jackson I
    Nature; 2018 Mar; 555(7696):355-358. PubMed ID: 29542688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wide-angle seismic reflections reveal a lithosphere-asthenosphere boundary zone in the subducting Pacific Plate, New Zealand.
    Herath P; Stern TA; Savage MK; Bassett D; Henrys S
    Sci Adv; 2022 Sep; 8(38):eabn5697. PubMed ID: 36149954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence of denser MgSiO3 glass above 133 gigapascal (GPa) and implications for remnants of ultradense silicate melt from a deep magma ocean.
    Murakami M; Bass JD
    Proc Natl Acad Sci U S A; 2011 Oct; 108(42):17286-9. PubMed ID: 21969547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A plume origin for hydrous melt at the lithosphere-asthenosphere boundary.
    Blatter D; Naif S; Key K; Ray A
    Nature; 2022 Apr; 604(7906):491-494. PubMed ID: 35444326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Olivine anisotropy suggests Gutenberg discontinuity is not the base of the lithosphere.
    Hansen LN; Qi C; Warren JM
    Proc Natl Acad Sci U S A; 2016 Sep; 113(38):10503-6. PubMed ID: 27606485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seismic evidence for partial melt below tectonic plates.
    Debayle E; Bodin T; Durand S; Ricard Y
    Nature; 2020 Oct; 586(7830):555-559. PubMed ID: 33087914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subducted banded iron formations as a source of ultralow-velocity zones at the core-mantle boundary.
    Dobson DP; Brodholt JP
    Nature; 2005 Mar; 434(7031):371-4. PubMed ID: 15772658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.