BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 2925614)

  • 21. Purification and properties of the NAD+-dependent (type D) and O2-dependent (type O) forms of rat liver xanthine dehydrogenase.
    Waud WR; Rajagopalan KV
    Arch Biochem Biophys; 1976 Feb; 172(2):354-64. PubMed ID: 176939
    [No Abstract]   [Full Text] [Related]  

  • 22. Kinetic mechanism of chicken liver xanthine dehydrogenase.
    Bruguera P; Lopez-Cabrera A; Canela EI
    Biochem J; 1988 Jan; 249(1):171-8. PubMed ID: 3422556
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of the flavin midpoint potential and NAD binding in determining NAD versus oxygen reactivity of xanthine oxidoreductase.
    Harris CM; Sanders SA; Massey V
    J Biol Chem; 1999 Feb; 274(8):4561-9. PubMed ID: 9988690
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The mobilization of ferritin iron by liver cytosol. A comparison of xanthine and NADH as reducing substrates.
    Topham R; Goger M; Pearce K; Schultz P
    Biochem J; 1989 Jul; 261(1):137-43. PubMed ID: 2775199
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Properties of xanthine dehydrogenase variants from rosy mutant strains of Drosophila melanogaster and their relevance to the enzyme's structure and mechanism.
    Doyle WA; Burke JF; Chovnick A; Dutton FL; Whittle JR; Bray RC
    Eur J Biochem; 1996 Aug; 239(3):782-95. PubMed ID: 8774727
    [TBL] [Abstract][Full Text] [Related]  

  • 26. One-electron and two-electron reductions of acceptors by xanthine oxidase and xanthine dehydrogenase.
    Nakamura M; Kurebayashi H; Yamazaki I
    J Biochem; 1978 Jan; 83(1):9-17. PubMed ID: 24048
    [No Abstract]   [Full Text] [Related]  

  • 27. Involvement of a single thiol group in the conversion of the NAD+-dependent activity of rat liver xanthine oxidoreductase to the O2-dependent activity.
    Kamiński ZW; Jezewska MM
    Biochem J; 1982 Nov; 207(2):341-6. PubMed ID: 6961918
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Interconversion of xanthine dehydrogenase and oxidase and mechanism of enzyme action].
    Nishino T
    Tanpakushitsu Kakusan Koso; 1989 Dec; 34(15):1978-88. PubMed ID: 2692075
    [No Abstract]   [Full Text] [Related]  

  • 29. Isolation of the domain containing the molybdenum, iron-sulfur I, and iron-sulfur II centers of chicken liver xanthine dehydrogenase.
    Coughlan MP; Betcher-Lange SL; Rajagopalan KV
    J Biol Chem; 1979 Nov; 254(21):10694-9. PubMed ID: 227849
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Xanthine dehydrogenase from Drosophila melanogaster: a comparison of the kinetic parameters of the pure enzyme from two wild-type isoalleles differing at a putative regulatory site.
    Edwards TC; Candido EP; Chovnick A
    Mol Gen Genet; 1977 Jul; 154(1):1-6. PubMed ID: 197387
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intermediate dehydrogenase-oxidase form of xanthine oxidoreductase in rat liver.
    Kamiński ZW; Jezewska MM
    Biochem J; 1979 Jul; 181(1):177-82. PubMed ID: 226081
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Purification and properties of milk xanthine dehydrogenase.
    Hunt J; Massey V
    J Biol Chem; 1992 Oct; 267(30):21479-85. PubMed ID: 1328233
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Comparative study of chicken liver xanthine dehydrogenase and bovine liver xanthine oxidase. dehydrogenase activity of xanthine oxidase (author's transl)].
    Canela E; Bozal J
    Rev Esp Fisiol; 1979 Mar; 35(1):51-62. PubMed ID: 37557
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of xanthine: NAD+ oxidoreductase from liver of toad Bufo viridis and other vertebrates.
    Zakrzewska B; Jezewska MM
    Comp Biochem Physiol B; 1989; 94(2):361-5. PubMed ID: 2591196
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Amino acid sequence of the NAD (H)--binding region of the mitochondrial nicotinamide nucleotide transhydrogenase modified by N,N'-dicyclohexylcarbodiimide.
    Wakabayashi S; Hatefi Y
    Biochem Int; 1987 Sep; 15(3):667-75. PubMed ID: 3426633
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isolation and identification of cysteinyl peptide labeled by 6- [( 4-bromo-2,3-dioxobutyl)thio]-6-deaminoadenosine 5'-diphosphate in the reduced diphosphopyridine nucleotide inhibitory site of glutamate dehydrogenase.
    Batra SP; Colman RF
    Biochemistry; 1986 Jun; 25(12):3508-15. PubMed ID: 3718940
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Turkey liver xanthine dehydrogenase. Relation between nicotinamide-adenine dinucleotide oxidoreductase activity and the content of functional enzyme.
    Fhaoláin IN; Coughlan MP
    Biochem J; 1976 Jul; 157(1):283-5. PubMed ID: 962863
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of NADH on hypoxanthine hydroxylation by native NAD+-dependent xanthine oxidoreductase of rat liver, and the possible biological role of this effect.
    Kamiński ZW; Jezewska MM
    Biochem J; 1981 Dec; 200(3):597-603. PubMed ID: 6952874
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The oxidative half-reaction of xanthine dehydrogenase with NAD; reaction kinetics and steady-state mechanism.
    Harris CM; Massey V
    J Biol Chem; 1997 Nov; 272(45):28335-41. PubMed ID: 9353290
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Syncatalytic modification of chicken liver xanthine dehydrogenase by hydrogen peroxide. The nature of the reaction.
    Betcher-Lange SL; Coughlan MP; Rajagopalan KV
    J Biol Chem; 1979 Sep; 254(18):8825-9. PubMed ID: 479163
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.