BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29256344)

  • 1. Prediction of Drug-Plasma Protein Binding Using Artificial Intelligence Based Algorithms.
    Kumar R; Sharma A; Siddiqui MH; Tiwari RK
    Comb Chem High Throughput Screen; 2018; 21(1):57-64. PubMed ID: 29256344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Human Intestinal Absorption of Compounds Using Artificial Intelligence Techniques.
    Kumar R; Sharma A; Siddiqui MH; Tiwari RK
    Curr Drug Discov Technol; 2017; 14(4):244-254. PubMed ID: 28382857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of P-glycoprotein substrates by a support vector machine approach.
    Xue Y; Yap CW; Sun LZ; Cao ZW; Wang JF; Chen YZ
    J Chem Inf Comput Sci; 2004; 44(4):1497-505. PubMed ID: 15272858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Silico Prediction of Compounds Binding to Human Plasma Proteins by QSAR Models.
    Sun L; Yang H; Li J; Wang T; Li W; Liu G; Tang Y
    ChemMedChem; 2018 Mar; 13(6):572-581. PubMed ID: 29057587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A large descriptor set and a probabilistic kernel-based classifier significantly improve druglikeness classification.
    Li Q; Bender A; Pei J; Lai L
    J Chem Inf Model; 2007; 47(5):1776-86. PubMed ID: 17718552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of milk/plasma drug concentration (M/P) ratio using support vector machine (SVM) method.
    Zhao C; Zhang H; Zhang X; Zhang R; Luan F; Liu M; Hu Z; Fan B
    Pharm Res; 2006 Jan; 23(1):41-8. PubMed ID: 16308669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virtual screening for cytochromes p450: successes of machine learning filters.
    Burton J; Ijjaali I; Petitet F; Michel A; Vercauteren DP
    Comb Chem High Throughput Screen; 2009 May; 12(4):369-82. PubMed ID: 19442071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of novel and selective TNF-alpha converting enzyme (TACE) inhibitors and characterization of correlative molecular descriptors by machine learning approaches.
    Cong Y; Yang XG; Lv W; Xue Y
    J Mol Graph Model; 2009 Oct; 28(3):236-44. PubMed ID: 19729328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational models to assign biopharmaceutics drug disposition classification from molecular structure.
    Khandelwal A; Bahadduri PM; Chang C; Polli JE; Swaan PW; Ekins S
    Pharm Res; 2007 Dec; 24(12):2249-62. PubMed ID: 17846869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of acetylcholinesterase inhibitors and characterization of correlative molecular descriptors by machine learning methods.
    Lv W; Xue Y
    Eur J Med Chem; 2010 Mar; 45(3):1167-72. PubMed ID: 20053484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction models of human plasma protein binding rate and oral bioavailability derived by using GA-CG-SVM method.
    Ma CY; Yang SY; Zhang H; Xiang ML; Huang Q; Wei YQ
    J Pharm Biomed Anal; 2008 Aug; 47(4-5):677-82. PubMed ID: 18455346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of support vector machine and artificial neural network systems for drug/nondrug classification.
    Byvatov E; Fechner U; Sadowski J; Schneider G
    J Chem Inf Comput Sci; 2003; 43(6):1882-9. PubMed ID: 14632437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of selection of molecular descriptors on the prediction of blood-brain barrier penetrating and nonpenetrating agents by statistical learning methods.
    Li H; Yap CW; Ung CY; Xue Y; Cao ZW; Chen YZ
    J Chem Inf Model; 2005; 45(5):1376-84. PubMed ID: 16180914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of pKa Values for Neutral and Basic Drugs based on Hybrid Artificial Intelligence Methods.
    Li M; Zhang H; Chen B; Wu Y; Guan L
    Sci Rep; 2018 Mar; 8(1):3991. PubMed ID: 29507318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drug discovery using support vector machines. The case studies of drug-likeness, agrochemical-likeness, and enzyme inhibition predictions.
    Zernov VV; Balakin KV; Ivaschenko AA; Savchuk NP; Pletnev IV
    J Chem Inf Comput Sci; 2003; 43(6):2048-56. PubMed ID: 14632457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In silico log P prediction for a large data set with support vector machines, radial basis neural networks and multiple linear regression.
    Chen HF
    Chem Biol Drug Des; 2009 Aug; 74(2):142-7. PubMed ID: 19549084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seminal quality prediction using data mining methods.
    Sahoo AJ; Kumar Y
    Technol Health Care; 2014; 22(4):531-45. PubMed ID: 24898862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of linear and nonlinear classification algorithms for the prediction of drug and chemical metabolism by human UDP-glucuronosyltransferase isoforms.
    Sorich MJ; Miners JO; McKinnon RA; Winkler DA; Burden FR; Smith PA
    J Chem Inf Comput Sci; 2003; 43(6):2019-24. PubMed ID: 14632453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of chemical carcinogenicity by machine learning approaches.
    Tan NX; Rao HB; Li ZR; Li XY
    SAR QSAR Environ Res; 2009; 20(1-2):27-75. PubMed ID: 19343583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning techniques and drug design.
    Gertrudes JC; Maltarollo VG; Silva RA; Oliveira PR; Honório KM; da Silva AB
    Curr Med Chem; 2012; 19(25):4289-97. PubMed ID: 22830342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.