These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 29256451)

  • 1. CPU time optimization and precise adjustment of the Geant4 physics parameters for a VARIAN 2100 C/D gamma radiotherapy linear accelerator simulation using GAMOS.
    Arce P; Lagares JI
    Phys Med Biol; 2018 Jan; 63(3):035007. PubMed ID: 29256451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the truebeam linac using a CAD to Geant4 geometry implementation: dose and IAEA-compliant phase space calculations.
    Constantin M; Perl J; LoSasso T; Salop A; Whittum D; Narula A; Svatos M; Keall PJ
    Med Phys; 2011 Jul; 38(7):4018-24. PubMed ID: 21858999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo modeling of a 6 and 18 MV Varian Clinac medical accelerator for in-field and out-of-field dose calculations: development and validation.
    Bednarz B; Xu XG
    Phys Med Biol; 2009 Feb; 54(4):N43-57. PubMed ID: 19141879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte carlo electron source model validation for an Elekta Precise linac.
    Ali OA; Willemse CA; Shaw W; O'Reilly FH; du Plessis FC
    Med Phys; 2011 May; 38(5):2366-73. PubMed ID: 21776771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inference of the optimal pretarget electron beam parameters in a Monte Carlo virtual linac model through simulated annealing.
    Bush K; Zavgorodni S; Beckham W
    Med Phys; 2009 Jun; 36(6):2309-19. PubMed ID: 19610319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the initial beam parameters in Monte Carlo linac simulation.
    Aljarrah K; Sharp GC; Neicu T; Jiang SB
    Med Phys; 2006 Apr; 33(4):850-8. PubMed ID: 16696460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DPM as a radiation transport engine for PRIMO.
    Rodriguez M; Sempau J; Bäumer C; Timmermann B; Brualla L
    Radiat Oncol; 2018 Dec; 13(1):256. PubMed ID: 30591056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extension of PENELOPE to protons: simulation of nuclear reactions and benchmark with Geant4.
    Sterpin E; Sorriaux J; Vynckier S
    Med Phys; 2013 Nov; 40(11):111705. PubMed ID: 24320413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo modeling and simulations of the High Definition (HD120) micro MLC and validation against measurements for a 6 MV beam.
    Borges C; Zarza-Moreno M; Heath E; Teixeira N; Vaz P
    Med Phys; 2012 Jan; 39(1):415-23. PubMed ID: 22225311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a commercial MRI Linac based Monte Carlo dose calculation algorithm with GEANT4.
    Ahmad SB; Sarfehnia A; Paudel MR; Kim A; Hissoiny S; Sahgal A; Keller B
    Med Phys; 2016 Feb; 43(2):894-907. PubMed ID: 26843250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo linear accelerator simulation of megavoltage photon beams: independent determination of initial beam parameters.
    Almberg SS; Frengen J; Kylling A; Lindmo T
    Med Phys; 2012 Jan; 39(1):40-7. PubMed ID: 22225273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo study of in-field and out-of-field dose distributions from a linear accelerator operating with and without a flattening-filter.
    Almberg SS; Frengen J; Lindmo T
    Med Phys; 2012 Aug; 39(8):5194-203. PubMed ID: 22894444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo simulation of the photon beam characteristics from medical linear accelerators.
    Kim HK; Han SJ; Kim JL; Kim BH; Chang SY; Lee JK
    Radiat Prot Dosimetry; 2006; 119(1-4):510-3. PubMed ID: 16644954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo simulation of a medical linear accelerator for radiotherapy use.
    Serrano B; Hachem A; Franchisseur E; Hérault J; Marcié S; Costa A; Bensadoun RJ; Barthe J; Gérard JP
    Radiat Prot Dosimetry; 2006; 119(1-4):506-9. PubMed ID: 16644964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of electron beam obliquity on lateral buildup ratio: a Monte Carlo dosimetry evaluation.
    Chow JC; Grigorov GN
    Phys Med Biol; 2007 Jul; 52(13):3965-77. PubMed ID: 17664588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of initial electron beam parameters on Monte Carlo calculated absorbed dose distributions for radiotherapy photon beams.
    Tzedakis A; Damilakis JE; Mazonakis M; Stratakis J; Varveris H; Gourtsoyiannis N
    Med Phys; 2004 Apr; 31(4):907-13. PubMed ID: 15125009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose increase at tissue-air interfaces in a lateral magnetic field due to returning electrons.
    Raaijmakers AJ; Raaymakers BW; Lagendijk JJ
    Phys Med Biol; 2005 Apr; 50(7):1363-76. PubMed ID: 15798329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Benchmarking of Monte Carlo simulation of bremsstrahlung from thick targets at radiotherapy energies.
    Faddegon BA; Asai M; Perl J; Ross C; Sempau J; Tinslay J; Salvat F
    Med Phys; 2008 Oct; 35(10):4308-17. PubMed ID: 18975676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accuracy of the photon and electron physics in GEANT4 for radiotherapy applications.
    Poon E; Verhaegen F
    Med Phys; 2005 Jun; 32(6):1696-711. PubMed ID: 16013728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implementation and experimental validation of the high dose rate stereotactic treatment mode at Varian accelerators.
    Hoffmann L
    Acta Oncol; 2009; 48(2):201-8. PubMed ID: 18759143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.