BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 29256569)

  • 1. Dietary compound proanthocyanidins from Chinese bayberry (Myrica rubra Sieb. et Zucc.) leaves attenuate chemotherapy-resistant ovarian cancer stem cell traits via targeting the Wnt/β-catenin signaling pathway and inducing G1 cell cycle arrest.
    Zhang Y; Chen S; Wei C; Rankin GO; Ye X; Chen YC
    Food Funct; 2018 Jan; 9(1):525-533. PubMed ID: 29256569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flavonoids from Chinese bayberry leaves induced apoptosis and G1 cell cycle arrest via Erk pathway in ovarian cancer cells.
    Zhang Y; Chen S; Wei C; Rankin GO; Ye X; Chen YC
    Eur J Med Chem; 2018 Mar; 147():218-226. PubMed ID: 29438890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dietary Compound Proanthocyanidins from Chinese bayberry (
    Zhang Y; Chen S; Wei C; Rankin GO; Rojanasakul Y; Ren N; Ye X; Chen YC
    J Funct Foods; 2018 Jan; 40():573-581. PubMed ID: 29576805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of a novel emulsifier by self-assembling of proanthocyanidins from Chinese bayberry (Myrica rubra Sieb. et Zucc.) leaves with gelatin.
    Chen S; Shen X; Tao W; Mao G; Wu W; Zhou S; Ye X; Pan H
    Food Chem; 2020 Jul; 319():126570. PubMed ID: 32172049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of unusual proanthocyanidins in leaves of bayberry ( Myrica rubra Sieb. et Zucc.).
    Yang H; Ye X; Liu D; Chen J; Zhang J; Shen Y; Yu D
    J Agric Food Chem; 2011 Mar; 59(5):1622-9. PubMed ID: 21319804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro inhibitory effects of Chinese bayberry (Myrica rubra Sieb. et Zucc.) leaves proanthocyanidins on pancreatic α-amylase and their interaction.
    Wang M; Chen J; Ye X; Liu D
    Bioorg Chem; 2020 Aug; 101():104029. PubMed ID: 32615466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Berbamine suppresses cell proliferation and promotes apoptosis in ovarian cancer partially via the inhibition of Wnt/β-catenin signaling.
    Zhang H; Jiao Y; Shi C; Song X; Chang Y; Ren Y; Shi X
    Acta Biochim Biophys Sin (Shanghai); 2018 Jun; 50(6):532-539. PubMed ID: 29701777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural elucidation and antioxidant activities of proanthocyanidins from Chinese bayberry (Myrica rubra Sieb. et Zucc.) leaves.
    Fu Y; Qiao L; Cao Y; Zhou X; Liu Y; Ye X
    PLoS One; 2014; 9(5):e96162. PubMed ID: 24805126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. WM130 preferentially inhibits hepatic cancer stem-like cells by suppressing AKT/GSK3β/β-catenin signaling pathway.
    Ni CX; Qi Y; Zhang J; Liu Y; Xu WH; Xu J; Hu HG; Wu QY; Wang Y; Zhang JP
    Oncotarget; 2016 Nov; 7(48):79544-79556. PubMed ID: 27783993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MiR-1207 overexpression promotes cancer stem cell-like traits in ovarian cancer by activating the Wnt/β-catenin signaling pathway.
    Wu G; Liu A; Zhu J; Lei F; Wu S; Zhang X; Ye L; Cao L; He S
    Oncotarget; 2015 Oct; 6(30):28882-94. PubMed ID: 26337084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ginsenoside-Rb1 targets chemotherapy-resistant ovarian cancer stem cells via simultaneous inhibition of Wnt/β-catenin signaling and epithelial-to-mesenchymal transition.
    Deng S; Wong CKC; Lai HC; Wong AST
    Oncotarget; 2017 Apr; 8(16):25897-25914. PubMed ID: 27825116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical role of Wnt/β-catenin signaling in driving epithelial ovarian cancer platinum resistance.
    Nagaraj AB; Joseph P; Kovalenko O; Singh S; Armstrong A; Redline R; Resnick K; Zanotti K; Waggoner S; DiFeo A
    Oncotarget; 2015 Sep; 6(27):23720-34. PubMed ID: 26125441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The anti-obesity properties of the proanthocyanidin extract from the leaves of Chinese bayberry (Myrica rubra Sieb.et Zucc.).
    Zhou X; Chen S; Ye X
    Food Funct; 2017 Sep; 8(9):3259-3270. PubMed ID: 28828418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ibuprofen reduces cell proliferation through inhibiting Wnt/β catenin signaling pathway in gastric cancer stem cells.
    Akrami H; Moradi B; Borzabadi Farahani D; Mehdizadeh K
    Cell Biol Int; 2018 Aug; 42(8):949-958. PubMed ID: 29512256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MicroRNA-214 Suppresses Ovarian Cancer by Targeting β-Catenin.
    Liu Y; Lin J; Zhai S; Sun C; Xu C; Zhou H; Liu H
    Cell Physiol Biochem; 2018; 45(4):1654-1662. PubMed ID: 29486472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction and application of a lung cancer stem cell model: antitumor drug screening and molecular mechanism of the inhibitory effects of sanguinarine.
    Yang J; Fang Z; Wu J; Yin X; Fang Y; Zhao F; Zhu S; Li Y
    Tumour Biol; 2016 Oct; 37(10):13871-13883. PubMed ID: 27485114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of Wnt/β-catenin pathway by niclosamide: a therapeutic target for ovarian cancer.
    Arend RC; Londoño-Joshi AI; Samant RS; Li Y; Conner M; Hidalgo B; Alvarez RD; Landen CN; Straughn JM; Buchsbaum DJ
    Gynecol Oncol; 2014 Jul; 134(1):112-20. PubMed ID: 24736023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Garcinol inhibits cancer stem cell-like phenotype via suppression of the Wnt/β-catenin/STAT3 axis signalling pathway in human non-small cell lung carcinomas.
    Huang WC; Kuo KT; Adebayo BO; Wang CH; Chen YJ; Jin K; Tsai TH; Yeh CT
    J Nutr Biochem; 2018 Apr; 54():140-150. PubMed ID: 29414668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IWR-1, a tankyrase inhibitor, attenuates Wnt/β-catenin signaling in cancer stem-like cells and inhibits in vivo the growth of a subcutaneous human osteosarcoma xenograft.
    Martins-Neves SR; Paiva-Oliveira DI; Fontes-Ribeiro C; Bovée JVMG; Cleton-Jansen AM; Gomes CMF
    Cancer Lett; 2018 Feb; 414():1-15. PubMed ID: 29126913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wnt/β-catenin signaling pathway in lung cancer stem cells is a potential target for the development of novel anticancer drugs.
    Jiang HL; Jiang LM; Han WD
    J BUON; 2015; 20(4):1094-100. PubMed ID: 26416062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.