These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 2925679)
1. Lateral diffusion as a rate-limiting step in ubiquinone-mediated mitochondrial electron transport. Chazotte B; Hackenbrock CR J Biol Chem; 1989 Mar; 264(9):4978-85. PubMed ID: 2925679 [TBL] [Abstract][Full Text] [Related]
2. Lateral diffusion of redox components in the mitochondrial inner membrane is unaffected by inner membrane folding and matrix density. Chazotte B; Hackenbrock CR J Biol Chem; 1991 Mar; 266(9):5973-9. PubMed ID: 2005133 [TBL] [Abstract][Full Text] [Related]
3. The multicollisional, obstructed, long-range diffusional nature of mitochondrial electron transport. Chazotte B; Hackenbrock CR J Biol Chem; 1988 Oct; 263(28):14359-67. PubMed ID: 3170548 [TBL] [Abstract][Full Text] [Related]
4. Relationship between lateral diffusion, collision frequency, and electron transfer of mitochondrial inner membrane oxidation-reduction components. Gupte S; Wu ES; Hoechli L; Hoechli M; Jacobson K; Sowers AE; Hackenbrock CR Proc Natl Acad Sci U S A; 1984 May; 81(9):2606-10. PubMed ID: 6326133 [TBL] [Abstract][Full Text] [Related]
5. The role of cytochrome c diffusion in mitochondrial electron transport. Gupte SS; Hackenbrock CR J Biol Chem; 1988 Apr; 263(11):5248-53. PubMed ID: 2833502 [TBL] [Abstract][Full Text] [Related]
6. Lateral diffusion of ubiquinone during electron transfer in phospholipid- and ubiquinone-enriched mitochondrial membranes. Schneider H; Lemasters JJ; Hackenbrock CR J Biol Chem; 1982 Sep; 257(18):10789-93. PubMed ID: 6286674 [TBL] [Abstract][Full Text] [Related]
7. Is ubiquinone diffusion rate-limiting for electron transfer? Lenaz G; Fato R J Bioenerg Biomembr; 1986 Oct; 18(5):369-401. PubMed ID: 3021715 [TBL] [Abstract][Full Text] [Related]
8. Multidimensional diffusion modes and collision frequencies of cytochrome c with its redox partners. Gupte SS; Hackenbrock CR J Biol Chem; 1988 Apr; 263(11):5241-7. PubMed ID: 2833501 [TBL] [Abstract][Full Text] [Related]
9. The random collision model and a critical assessment of diffusion and collision in mitochondrial electron transport. Hackenbrock CR; Chazotte B; Gupte SS J Bioenerg Biomembr; 1986 Oct; 18(5):331-68. PubMed ID: 3021714 [TBL] [Abstract][Full Text] [Related]
10. The mobility of a fluorescent ubiquinone in model lipid membranes. Relevance to mitochondrial electron transport. Chazotte B; Wu ES; Hackenbrock CR Biochim Biophys Acta; 1991 Jul; 1058(3):400-9. PubMed ID: 2065063 [TBL] [Abstract][Full Text] [Related]
11. Relationship between the density distribution of intramembrane particles and electron transfer in the mitochondrial inner membrane as revealed by cholesterol incorporation. Schneider H; Höchli M; Hackenbrock CR J Cell Biol; 1982 Aug; 94(2):387-93. PubMed ID: 7107704 [TBL] [Abstract][Full Text] [Related]
12. Synthesis, location, and lateral mobility of fluorescently labeled ubiquinone 10 in mitochondrial and artificial membranes. Rajarathnam K; Hochman J; Schindler M; Ferguson-Miller S Biochemistry; 1989 Apr; 28(8):3168-76. PubMed ID: 2742832 [TBL] [Abstract][Full Text] [Related]
13. Steady-state kinetics of the reduction of coenzyme Q analogs by complex I (NADH:ubiquinone oxidoreductase) in bovine heart mitochondria and submitochondrial particles. Fato R; Estornell E; Di Bernardo S; Pallotti F; Parenti Castelli G; Lenaz G Biochemistry; 1996 Feb; 35(8):2705-16. PubMed ID: 8611577 [TBL] [Abstract][Full Text] [Related]
14. Two-dimensional diffusion of F1F0-ATP synthase and ADP/ATP translocator. Testing a hypothesis for ATP synthesis in the mitochondrial inner membrane. Gupte SS; Chazotte B; Leesnitzer MA; Hackenbrock CR Biochim Biophys Acta; 1991 Nov; 1069(2):131-8. PubMed ID: 1718429 [TBL] [Abstract][Full Text] [Related]
15. The existence of a lysosomal redox chain and the role of ubiquinone. Gille L; Nohl H Arch Biochem Biophys; 2000 Mar; 375(2):347-54. PubMed ID: 10700391 [TBL] [Abstract][Full Text] [Related]
16. Spin-label electron paramagnetic resonance and differential scanning calorimetry studies of the interaction between mitochondrial succinate-ubiquinone and ubiquinol-cytochrome c reductases. Gwak SH; Yu L; Yu CA Biochemistry; 1986 Nov; 25(23):7675-82. PubMed ID: 3026458 [TBL] [Abstract][Full Text] [Related]
17. Phospholipid-enriched bacterial chromatophores. A system suited to investigate the ubiquinone-mediated interactions of protein complexes in photosynthetic oxidoreduction processes. Casadio R; Venturoli G; Di Gioia A; Castellani P; Leonardi L; Melandri BA J Biol Chem; 1984 Jul; 259(14):9149-57. PubMed ID: 6378907 [TBL] [Abstract][Full Text] [Related]
18. Steady-state kinetics of ubiquinol-cytochrome c reductase in bovine heart submitochondrial particles: diffusional effects. Fato R; Cavazzoni M; Castelluccio C; Parenti Castelli G; Palmer G; Degli Esposti M; Lenaz G Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):225-36. PubMed ID: 8382478 [TBL] [Abstract][Full Text] [Related]
19. Independent lateral diffusion of cytochrome bc1 complex and cytochrome oxidase in the mitochondrial inner membrane. Höchli M; Höchli L; Hackenbrock CR Eur J Cell Biol; 1985 Jul; 38(1):1-5. PubMed ID: 2992981 [TBL] [Abstract][Full Text] [Related]
20. Glucagon treatment of rats activates the respiratory chain of liver mitochondria at more than one site. Halestrap AP Biochim Biophys Acta; 1987 Feb; 927(2):280-90. PubMed ID: 3028493 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]