These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 2925679)
21. Distribution of tocopheryl quinone in mitochondrial membranes and interference with ubiquinone-mediated electron transfer. Gregor W; Staniek K; Nohl H; Gille L Biochem Pharmacol; 2006 May; 71(11):1589-601. PubMed ID: 16569397 [TBL] [Abstract][Full Text] [Related]
23. Oxidation of ubiquinol by peroxynitrite: implications for protection of mitochondria against nitrosative damage. Schöpfer F; Riobó N; Carreras MC; Alvarez B; Radi R; Boveris A; Cadenas E; Poderoso JJ Biochem J; 2000 Jul; 349(Pt 1):35-42. PubMed ID: 10861208 [TBL] [Abstract][Full Text] [Related]
24. Effect of substituents of the benzoquinone ring on electron-transfer activities of ubiquinone derivatives. Gu LQ; Yu L; Yu CA Biochim Biophys Acta; 1990 Feb; 1015(3):482-92. PubMed ID: 2154255 [TBL] [Abstract][Full Text] [Related]
25. Bioflavonoid effects on the mitochondrial respiratory electron transport chain and cytochrome c redox state. Moini H; Arroyo A; Vaya J; Packer L Redox Rep; 1999; 4(1-2):35-41. PubMed ID: 10714274 [TBL] [Abstract][Full Text] [Related]
26. Protein ubiquinone interaction. Synthesis and biological properties of 5-alkyl ubiquinone derivatives. He DY; Yu L; Yu CA J Biol Chem; 1994 Nov; 269(45):27885-8. PubMed ID: 7961719 [TBL] [Abstract][Full Text] [Related]
27. Effects of extraction of ubiquinone on succinate-ferricyanide reductase activity. Landi L; Pasquali P; Cabrini L; Fahmy T; Lenaz G Ital J Biochem; 1982; 31(5):322-8. PubMed ID: 7169318 [TBL] [Abstract][Full Text] [Related]
28. Oxidation process of bovine heart ubiquinol-cytochrome c reductase as studied by stopped-flow rapid-scan spectrophotometry and simulations based on the mechanistic Q cycle model. Orii Y; Miki T J Biol Chem; 1997 Jul; 272(28):17594-604. PubMed ID: 9211907 [TBL] [Abstract][Full Text] [Related]
29. Idebenone-induced recovery of glycerol-3-phosphate and succinate oxidation inhibited by digitonin. Rauchová H; Vokurková M; Drahota Z Physiol Res; 2012; 61(3):259-65. PubMed ID: 22480420 [TBL] [Abstract][Full Text] [Related]
30. Kinetics of integrated electron transfer in the mitochondrial respiratory chain: random collisions vs. solid state electron channeling. Lenaz G; Genova ML Am J Physiol Cell Physiol; 2007 Apr; 292(4):C1221-39. PubMed ID: 17035300 [TBL] [Abstract][Full Text] [Related]
31. Mobility in the mitochondrial electron transport chain. Hochman J; Ferguson-Miller S; Schindler M Biochemistry; 1985 May; 24(10):2509-16. PubMed ID: 2990530 [TBL] [Abstract][Full Text] [Related]
32. Relationships between bilayer lipid, motional freedom of oxidoreductase components, and electron transfer in the mitochondrial inner membrane. Hackenbrock CR; Schneider H; Lemasters JJ; Höchli M Adv Exp Med Biol; 1980; 132():245-63. PubMed ID: 7424710 [TBL] [Abstract][Full Text] [Related]
33. Ubiquinol-cytochrome c oxidoreductase. The redox reactions of the bis-heme cytochrome b in ubiquinone-sufficient and ubiquinone-deficient systems. Matsuno-Yagi A; Hatefi Y J Biol Chem; 1996 Mar; 271(11):6164-71. PubMed ID: 8626405 [TBL] [Abstract][Full Text] [Related]
34. Direct interaction between yeast NADH-ubiquinone oxidoreductase, succinate-ubiquinone oxidoreductase, and ubiquinol-cytochrome c oxidoreductase in the reduction of exogenous quinones. Zhu QS; Beattie DS J Biol Chem; 1988 Jan; 263(1):193-9. PubMed ID: 2826438 [TBL] [Abstract][Full Text] [Related]
35. Electron transport-linked ubiquinone-dependent recycling of alpha-tocopherol inhibits autooxidation of mitochondrial membranes. Lass A; Sohal RS Arch Biochem Biophys; 1998 Apr; 352(2):229-36. PubMed ID: 9587410 [TBL] [Abstract][Full Text] [Related]
36. Effect of the nonionic detergent Triton X-100 on mitochondrial succinate-oxidizing enzymes. Barbero MC; Valpuesta JM; Rial E; Gurtubay JI; Goñi FM; Macarulla JM Arch Biochem Biophys; 1984 Feb; 228(2):560-8. PubMed ID: 6320742 [TBL] [Abstract][Full Text] [Related]
37. Evidence for a concerted mechanism of ubiquinol oxidation by the cytochrome bc1 complex. Snyder CH; Gutierrez-Cirlos EB; Trumpower BL J Biol Chem; 2000 May; 275(18):13535-41. PubMed ID: 10788468 [TBL] [Abstract][Full Text] [Related]
38. Electron transfer within complex II. Succinate:ubiquinone oxidoreductase of Escherichia coli. Anderson RF; Hille R; Shinde SS; Cecchini G J Biol Chem; 2005 Sep; 280(39):33331-7. PubMed ID: 16085649 [TBL] [Abstract][Full Text] [Related]
39. Structure of electron transfer flavoprotein-ubiquinone oxidoreductase and electron transfer to the mitochondrial ubiquinone pool. Zhang J; Frerman FE; Kim JJ Proc Natl Acad Sci U S A; 2006 Oct; 103(44):16212-7. PubMed ID: 17050691 [TBL] [Abstract][Full Text] [Related]
40. Rate-limiting step in electron transport. Osmotically sensitive diffusion of quinones through voids in the bilayer. Mathai JC; Sauna ZE; John O; Sitaramam V J Biol Chem; 1993 Jul; 268(21):15442-54. PubMed ID: 8340373 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]