BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 2925688)

  • 1. Transcriptional regulatory sequences of the housekeeping gene for human triosephosphate isomerase.
    Boyer TG; Krug JR; Maquat LE
    J Biol Chem; 1989 Mar; 264(9):5177-87. PubMed ID: 2925688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minimal sequence and factor requirements for the initiation of transcription from an atypical, TATATAA box-containing housekeeping promoter.
    Boyer TG; Maquat LE
    J Biol Chem; 1990 Nov; 265(33):20524-32. PubMed ID: 2243103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the functional gene and several processed pseudogenes in the human triosephosphate isomerase gene family.
    Brown JR; Daar IO; Krug JR; Maquat LE
    Mol Cell Biol; 1985 Jul; 5(7):1694-706. PubMed ID: 4022011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulatory elements mediating transcription of the human Ha-ras gene.
    Lee W; Keller EB
    J Mol Biol; 1991 Aug; 220(3):599-611. PubMed ID: 1870124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Translation to near the distal end of the penultimate exon is required for normal levels of spliced triosephosphate isomerase mRNA.
    Cheng J; Fogel-Petrovic M; Maquat LE
    Mol Cell Biol; 1990 Oct; 10(10):5215-25. PubMed ID: 2398889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The consequence of nucleotide substitutions in the triosephosphate isomerase (TPI) gene promoter.
    Humphries A; Ationu A; Wild B; Layton DM
    Blood Cells Mol Dis; 1999; 25(3-4):210-7. PubMed ID: 10575546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The CACC box upstream of human embryonic epsilon globin gene binds Sp1 and is a functional promoter element in vitro and in vivo.
    Yu CY; Motamed K; Chen J; Bailey AD; Shen CK
    J Biol Chem; 1991 May; 266(14):8907-15. PubMed ID: 2026603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleotide sequence of the triosephosphate isomerase gene from Aspergillus nidulans: implications for a differential loss of introns.
    McKnight GL; O'Hara PJ; Parker ML
    Cell; 1986 Jul; 46(1):143-7. PubMed ID: 3521890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonsense codons can reduce the abundance of nuclear mRNA without affecting the abundance of pre-mRNA or the half-life of cytoplasmic mRNA.
    Cheng J; Maquat LE
    Mol Cell Biol; 1993 Mar; 13(3):1892-902. PubMed ID: 8441420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcription of the triose-phosphate-isomerase gene of Schizosaccharomyces pombe initiates from a start point different from that in Saccharomyces cerevisiae.
    Russell PR
    Gene; 1985; 40(1):125-30. PubMed ID: 3912263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of cis-acting regulatory elements in the promoter region of the rat brain creatine kinase gene.
    Hobson GM; Molloy GR; Benfield PA
    Mol Cell Biol; 1990 Dec; 10(12):6533-43. PubMed ID: 2247071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional role of a conformationally flexible homopurine/homopyrimidine domain of the androgen receptor gene promoter interacting with Sp1 and a pyrimidine single strand DNA-binding protein.
    Chen S; Supakar PC; Vellanoweth RL; Song CS; Chatterjee B; Roy AK
    Mol Endocrinol; 1997 Jan; 11(1):3-15. PubMed ID: 8994183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Lactococcus lactis triosephosphate isomerase gene, tpi, is monocistronic.
    Cancilla MR; Davidson BE; Hillier AJ; Nguyen NY; Thompson J
    Microbiology (Reading); 1995 Jan; 141 ( Pt 1)():229-38. PubMed ID: 7534588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Promoter activity and distance constraints of one versus two Sp1 binding sites.
    Segal R; Berk AJ
    J Biol Chem; 1991 Oct; 266(30):20406-11. PubMed ID: 1939095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Premature translation termination mediates triosephosphate isomerase mRNA degradation.
    Daar IO; Maquat LE
    Mol Cell Biol; 1988 Feb; 8(2):802-13. PubMed ID: 2832737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fine structure genetic analysis of a beta-globin promoter.
    Myers RM; Tilly K; Maniatis T
    Science; 1986 May; 232(4750):613-8. PubMed ID: 3457470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unique sequence organization and erythroid cell-specific nuclear factor-binding of mammalian theta 1 globin promoters.
    Kim JH; Yu CY; Bailey A; Hardison R; Shen CK
    Nucleic Acids Res; 1989 Jul; 17(14):5687-700. PubMed ID: 2569721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of sterol-independent regulatory elements in the human ATP-binding cassette transporter A1 promoter: role of Sp1/3, E-box binding factors, and an oncostatin M-responsive element.
    Langmann T; Porsch-Ozcürümez M; Heimerl S; Probst M; Moehle C; Taher M; Borsukova H; Kielar D; Kaminski WE; Dittrich-Wengenroth E; Schmitz G
    J Biol Chem; 2002 Apr; 277(17):14443-50. PubMed ID: 11839742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin of human triosephosphate isomerase isozymes: further evidence for the single structural locus hypothesis with Japanese variants.
    Asakawa J; Iida S
    Hum Genet; 1985; 71(1):22-6. PubMed ID: 3861565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origin of the triosephosphate isomerase isozymes in humans: genetic evidence for the expression of a single structural locus.
    Decker RS; Mohrenweiser HW
    Am J Hum Genet; 1981 Sep; 33(5):683-91. PubMed ID: 7294020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.