These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 29257259)

  • 1. A multigene support vector machine predictor for metastasis of cutaneous melanoma.
    Wei D
    Mol Med Rep; 2018 Feb; 17(2):2907-2914. PubMed ID: 29257259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A support vector machine classifier for the prediction of osteosarcoma metastasis with high accuracy.
    He Y; Ma J; Ye X
    Int J Mol Med; 2017 Nov; 40(5):1357-1364. PubMed ID: 28901446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Establishment of a SVM classifier to predict recurrence of ovarian cancer.
    Zhou J; Li L; Wang L; Li X; Xing H; Cheng L
    Mol Med Rep; 2018 Oct; 18(4):3589-3598. PubMed ID: 30106117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of a 26‑feature gene support vector machine classifier for smoking and non‑smoking lung adenocarcinoma sample classification.
    Yang L; Sun L; Wang W; Xu H; Li Y; Zhao JY; Liu DZ; Wang F; Zhang LY
    Mol Med Rep; 2018 Feb; 17(2):3005-3013. PubMed ID: 29257283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feature genes in metastatic breast cancer identified by MetaDE and SVM classifier methods.
    Tuo Y; An N; Zhang M
    Mol Med Rep; 2018 Mar; 17(3):4281-4290. PubMed ID: 29328377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Support vector machine classifier for prediction of the metastasis of colorectal cancer.
    Zhi J; Sun J; Wang Z; Ding W
    Int J Mol Med; 2018 Mar; 41(3):1419-1426. PubMed ID: 29328363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of key candidate genes involved in melanoma metastasis.
    Chen J; Wu F; Shi Y; Yang D; Xu M; Lai Y; Liu Y
    Mol Med Rep; 2019 Aug; 20(2):903-914. PubMed ID: 31173190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 80-gene set potentially predicts the relapse in laryngeal carcinoma optimized by support vector machine.
    Yang B; Guo Q; Wang F; Cai K; Bao X; Chu J
    Cancer Biomark; 2017; 19(1):65-73. PubMed ID: 28269752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of risk genes associated with myocardial infarction based on the recursive feature elimination algorithm and support vector machine classifier.
    Yang X
    Mol Med Rep; 2018 Jan; 17(1):1555-1560. PubMed ID: 29138828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Keratinocyte Differentiation-Involved Genes for Metastatic Melanoma by Gene Expression Profiles.
    Li K; Guo S; Tong S; Sun Q; Jin S; Qi B; Shao Y; Xu N
    Comput Math Methods Med; 2021; 2021():9652768. PubMed ID: 35003328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening of gene markers related to the prognosis of metastatic skin cutaneous melanoma based on Logit regression and survival analysis.
    Jia G; Song Z; Xu Z; Tao Y; Wu Y; Wan X
    BMC Med Genomics; 2021 Apr; 14(1):96. PubMed ID: 33823876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of a 5-feature gene model by support vector machine for classifying osteoporosis samples.
    Hu M; Zou L; Lu J; Yang Z; Chen Y; Xu Y; Sun C
    Bioengineered; 2021 Dec; 12(1):6821-6830. PubMed ID: 34622712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coexpression network analysis identified that plakophilin 1 is associated with the metastasis in human melanoma.
    Wang HZ; Wang F; Chen PF; Zhang M; Yu MX; Wang HL; Zhao Q; Liu J
    Biomed Pharmacother; 2019 Mar; 111():1234-1242. PubMed ID: 30841437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 16-gene expression signature to distinguish stage I from stage II lung squamous carcinoma.
    Wang R; Cai Y; Zhang B; Wu Z
    Int J Mol Med; 2018 Mar; 41(3):1377-1384. PubMed ID: 29286069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 21‑gene Support Vector Machine classifier and a 10‑gene risk score system constructed for patients with gastric cancer.
    Jiang H; Gu J; Du J; Qi X; Qian C; Fei B
    Mol Med Rep; 2020 Jan; 21(1):347-359. PubMed ID: 31939629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network-based co-expression analysis for exploring the potential diagnostic biomarkers of metastatic melanoma.
    Wang LX; Li Y; Chen GZ
    PLoS One; 2018; 13(1):e0190447. PubMed ID: 29377892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complex integrated analysis of lncRNAs-miRNAs-mRNAs in oral squamous cell carcinoma.
    Li S; Chen X; Liu X; Yu Y; Pan H; Haak R; Schmidt J; Ziebolz D; Schmalz G
    Oral Oncol; 2017 Oct; 73():1-9. PubMed ID: 28939059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classifier of cross talk genes predicts the prognosis of hepatocellular carcinoma.
    Zhai X; Xue Q; Liu Q; Guo Y; Chen Z
    Mol Med Rep; 2017 Sep; 16(3):3253-3261. PubMed ID: 28713927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 15-gene signature for prediction of colon cancer recurrence and prognosis based on SVM.
    Xu G; Zhang M; Zhu H; Xu J
    Gene; 2017 Mar; 604():33-40. PubMed ID: 27998790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Competing endogenous RNA regulatory network in papillary thyroid carcinoma.
    Chen S; Fan X; Gu H; Zhang L; Zhao W
    Mol Med Rep; 2018 Jul; 18(1):695-704. PubMed ID: 29767230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.