BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

593 related articles for article (PubMed ID: 29257667)

  • 1. Electrochemical Characteristics of Layered Transition Metal Oxide Cathode Materials for Lithium Ion Batteries: Surface, Bulk Behavior, and Thermal Properties.
    Tian C; Lin F; Doeff MM
    Acc Chem Res; 2018 Jan; 51(1):89-96. PubMed ID: 29257667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatially resolved surface valence gradient and structural transformation of lithium transition metal oxides in lithium-ion batteries.
    Liu H; Bugnet M; Tessaro MZ; Harris KJ; Dunham MJ; Jiang M; Goward GR; Botton GA
    Phys Chem Chem Phys; 2016 Oct; 18(42):29064-29075. PubMed ID: 27711529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ni/Li Disordering in Layered Transition Metal Oxide: Electrochemical Impact, Origin, and Control.
    Zheng J; Ye Y; Liu T; Xiao Y; Wang C; Wang F; Pan F
    Acc Chem Res; 2019 Aug; 52(8):2201-2209. PubMed ID: 31180201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries.
    Lee KT; Jeong S; Cho J
    Acc Chem Res; 2013 May; 46(5):1161-70. PubMed ID: 22509931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the Complexities of Structural Changes in Layered Oxide Cathode Materials for Li-Ion Batteries during Fast Charge-Discharge Cycling and Heating.
    Hu E; Wang X; Yu X; Yang XQ
    Acc Chem Res; 2018 Feb; 51(2):290-298. PubMed ID: 29350034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries.
    Liu W; Oh P; Liu X; Lee MJ; Cho W; Chae S; Kim Y; Cho J
    Angew Chem Int Ed Engl; 2015 Apr; 54(15):4440-57. PubMed ID: 25801735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From Coating to Dopant: How the Transition Metal Composition Affects Alumina Coatings on Ni-Rich Cathodes.
    Han B; Key B; Lapidus SH; Garcia JC; Iddir H; Vaughey JT; Dogan F
    ACS Appl Mater Interfaces; 2017 Nov; 9(47):41291-41302. PubMed ID: 29091400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Layered Oxide Cathodes for Sodium-Ion Batteries: Storage Mechanism, Electrochemistry, and Techno-economics.
    Zuo W; Innocenti A; Zarrabeitia M; Bresser D; Yang Y; Passerini S
    Acc Chem Res; 2023 Feb; 56(3):284-296. PubMed ID: 36696961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent achievements toward the development of Ni-based layered oxide cathodes for fast-charging Li-ion batteries.
    Zhang Y; Kim JC; Song HW; Lee S
    Nanoscale; 2023 Mar; 15(9):4195-4218. PubMed ID: 36757735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nickel-rich layered microspheres cathodes: lithium/nickel disordering and electrochemical performance.
    Fu C; Li G; Luo D; Li Q; Fan J; Li L
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):15822-31. PubMed ID: 25203668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling Ni
    Yeh NH; Wang FM; Khotimah C; Wang XC; Lin YW; Chang SC; Hsu CC; Chang YJ; Tiong L; Liu CH; Lu YR; Liao YF; Chang CK; Haw SC; Pao CW; Chen JL; Chen CL; Lee JF; Chan TS; Sheu HS; Chen JM; Ramar A; Su CH
    ACS Appl Mater Interfaces; 2021 Feb; 13(6):7355-7369. PubMed ID: 33534550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual Substitution Strategy in Co-Free Layered Cathode Materials for Superior Lithium Ion Batteries.
    Jia G; Li F; Wang J; Liu S; Yang Y
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):18733-18742. PubMed ID: 33861562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct Surface and Bulk Thermal Behaviors of LiNi
    Tian C; Xu Y; Kan WH; Sokaras D; Nordlund D; Shen H; Chen K; Liu Y; Doeff M
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11643-11656. PubMed ID: 32057227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Mn content on the electrochemical properties of nickel-rich layered LiNi(0.8-x)Co(0.1)Mn(0.1+x)O₂ (0.0 ≤ x ≤ 0.08) cathodes for lithium-ion batteries.
    Zheng J; Kan WH; Manthiram A
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6926-34. PubMed ID: 25756196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries.
    Yu SH; Feng X; Zhang N; Seok J; Abruña HD
    Acc Chem Res; 2018 Feb; 51(2):273-281. PubMed ID: 29373023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile Mn Surface Doping of Ni-Rich Layered Cathode Materials for Lithium Ion Batteries.
    Cho W; Lim YJ; Lee SM; Kim JH; Song JH; Yu JS; Kim YJ; Park MS
    ACS Appl Mater Interfaces; 2018 Nov; 10(45):38915-38921. PubMed ID: 30335357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A versatile single molecular precursor for the synthesis of layered oxide cathode materials for Li-ion batteries.
    Li M; Liu J; Liu T; Zhang M; Pan F
    Chem Commun (Camb); 2018 Feb; 54(11):1331-1334. PubMed ID: 29349459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of cation mixing controlled by thermal treatment duration on the electrochemical stability of lithium transition-metal oxides.
    Sun G; Yin X; Yang W; Song A; Jia C; Yang W; Du Q; Ma Z; Shao G
    Phys Chem Chem Phys; 2017 Nov; 19(44):29886-29894. PubMed ID: 29086786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Review of the U.S. Department of Energy's "deep dive" effort to understand voltage fade in Li- and Mn-rich cathodes.
    Croy JR; Balasubramanian M; Gallagher KG; Burrell AK
    Acc Chem Res; 2015 Nov; 48(11):2813-21. PubMed ID: 26451674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.