These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 29257691)

  • 41. Rational Concept for Designing Vapor-Liquid-Solid Growth of Single Crystalline Metal Oxide Nanowires.
    Klamchuen A; Suzuki M; Nagashima K; Yoshida H; Kanai M; Zhuge F; He Y; Meng G; Kai S; Takeda S; Kawai T; Yanagida T
    Nano Lett; 2015 Oct; 15(10):6406-12. PubMed ID: 26372675
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Atomic-Resolution Spectrum Imaging of Semiconductor Nanowires.
    Zamani RR; Hage FS; Lehmann S; Ramasse QM; Dick KA
    Nano Lett; 2018 Mar; 18(3):1557-1563. PubMed ID: 29116807
    [TBL] [Abstract][Full Text] [Related]  

  • 43. InSb heterostructure nanowires: MOVPE growth under extreme lattice mismatch.
    Caroff P; Messing ME; Mattias Borg B; Dick KA; Deppert K; Wernersson LE
    Nanotechnology; 2009 Dec; 20(49):495606. PubMed ID: 19904026
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Silver-assisted growth of high-quality InAs
    Wen L; Liu L; Liao D; Zhuo R; Pan D; Zhao J
    Nanotechnology; 2020 Nov; 31(46):465602. PubMed ID: 32750681
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Self-induced growth of vertical free-standing InAs nanowires on Si(111) by molecular beam epitaxy.
    Koblmüller G; Hertenberger S; Vizbaras K; Bichler M; Bao F; Zhang JP; Abstreiter G
    Nanotechnology; 2010 Sep; 21(36):365602. PubMed ID: 20702932
    [TBL] [Abstract][Full Text] [Related]  

  • 46. InAs/InP radial nanowire heterostructures as high electron mobility devices.
    Jiang X; Xiong Q; Nam S; Qian F; Li Y; Lieber CM
    Nano Lett; 2007 Oct; 7(10):3214-8. PubMed ID: 17867718
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Anomalous Strain Relaxation in Core-Shell Nanowire Heterostructures via Simultaneous Coherent and Incoherent Growth.
    Lewis RB; Nicolai L; Küpers H; Ramsteiner M; Trampert A; Geelhaar L
    Nano Lett; 2017 Jan; 17(1):136-142. PubMed ID: 28001430
    [TBL] [Abstract][Full Text] [Related]  

  • 48. From Twinning to Pure Zincblende Catalyst-Free InAs(Sb) Nanowires.
    Potts H; Friedl M; Amaduzzi F; Tang K; Tütüncüoglu G; Matteini F; Alarcon Lladó E; McIntyre PC; Fontcuberta i Morral A
    Nano Lett; 2016 Jan; 16(1):637-43. PubMed ID: 26686394
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Semiconductor Nanowire Light-Emitting Diodes Grown on Metal: A Direction Toward Large-Scale Fabrication of Nanowire Devices.
    Sarwar AT; Carnevale SD; Yang F; Kent TF; Jamison JJ; McComb DW; Myers RC
    Small; 2015 Oct; 11(40):5402-8. PubMed ID: 26307552
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Controlled Formation of Radial Core-Shell Si/Metal Silicide Crystalline Heterostructures.
    Kosloff A; Granot E; Barkay Z; Patolsky F
    Nano Lett; 2018 Jan; 18(1):70-80. PubMed ID: 29198117
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quasi One-Dimensional Metal-Semiconductor Heterostructures.
    Benter S; Dubrovskii VG; Bartmann M; Campo A; Zardo I; Sistani M; Stöger-Pollach M; Lancaster S; Detz H; Lugstein A
    Nano Lett; 2019 Jun; 19(6):3892-3897. PubMed ID: 31117757
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Design, synthesis, and characterization of novel nanowire structures for photovoltaics and intracellular probes.
    Tian B; Lieber CM
    Pure Appl Chem; 2011 Jan; 83(12):2153-2169. PubMed ID: 22707797
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Surface diffusion and substrate-nanowire adatom exchange in InAs nanowire growth.
    Dayeh SA; Yu ET; Wang D
    Nano Lett; 2009 May; 9(5):1967-72. PubMed ID: 19397297
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sb Incorporation in Wurtzite and Zinc Blende InAs
    Dahl M; Namazi L; Zamani RR; Dick KA
    Small; 2018 Mar; 14(11):e1703785. PubMed ID: 29377459
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Droplet dynamics in controlled InAs nanowire interconnections.
    Dalacu D; Kam A; Austing DG; Poole PJ
    Nano Lett; 2013 Jun; 13(6):2676-81. PubMed ID: 23634760
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Radial modulation doping in core-shell nanowires.
    Dillen DC; Kim K; Liu ES; Tutuc E
    Nat Nanotechnol; 2014 Feb; 9(2):116-20. PubMed ID: 24441982
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Growth of InAs Wurtzite Nanocrosses from Hexagonal and Cubic Basis.
    Krizek F; Kanne T; Razmadze D; Johnson E; Nygård J; Marcus CM; Krogstrup P
    Nano Lett; 2017 Oct; 17(10):6090-6096. PubMed ID: 28895746
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Designing complex radial heterostructures of Te/Bi
    Chatterjee D; Kumar A; B P; N R
    Nanotechnology; 2020 Dec; 32(10):105601. PubMed ID: 33331300
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Growth dynamics of SiGe nanowires by the vapour-liquid-solid method and its impact on SiGe/Si axial heterojunction abruptness.
    Pura JL; Periwal P; Baron T; Jiménez J
    Nanotechnology; 2018 Aug; 29(35):355602. PubMed ID: 29869997
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Designing Complex Radial Heterostructures of Te/Bi
    Chatterjee D; Kumar A; Bellare P; Narayanan R
    Nanotechnology; 2020 Nov; ():. PubMed ID: 33212427
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.