BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 29257724)

  • 1. Inhibition of Initial Attachment of Injured Salmonella Typhimurium onto Abiotic Surfaces.
    Kim WJ; Jeong KO; Kang DH
    J Food Prot; 2018 Jan; 81(1):37-42. PubMed ID: 29257724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biofilm formation by multidrug-resistant Salmonella enterica serotype typhimurium phage type DT104 and other pathogens.
    Kim SH; Wei CI
    J Food Prot; 2007 Jan; 70(1):22-9. PubMed ID: 17265855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Attachment behaviour of Escherichia coli K12 and Salmonella Typhimurium P6 on food contact surfaces for food transportation.
    Abban S; Jakobsen M; Jespersen L
    Food Microbiol; 2012 Sep; 31(2):139-47. PubMed ID: 22608216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of stainless steel finish on Salmonella Typhimurium attachment, biofilm formation and sensitivity to chlorine.
    Schlisselberg DB; Yaron S
    Food Microbiol; 2013 Aug; 35(1):65-72. PubMed ID: 23628616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergistic effect of steam and lactic acid against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes biofilms on polyvinyl chloride and stainless steel.
    Ban GH; Park SH; Kim SO; Ryu S; Kang DH
    Int J Food Microbiol; 2012 Jul; 157(2):218-23. PubMed ID: 22647677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition and inactivation of Salmonella typhimurium biofilms from polystyrene and stainless steel surfaces by essential oils and phenolic constituent carvacrol.
    Soni KA; Oladunjoye A; Nannapaneni R; Schilling MW; Silva JL; Mikel B; Bailey RH
    J Food Prot; 2013 Feb; 76(2):205-12. PubMed ID: 23433366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbiological study of biofilm formation in isolates of Salmonella enterica Typhimurium DT104 and DT104b cultured from the modern pork chain.
    O'Leary D; Cabe EM; McCusker MP; Martins M; Fanning S; Duffy G
    Int J Food Microbiol; 2013 Jan; 161(1):36-43. PubMed ID: 23266499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lactobacillus strains inhibit biofilm formation of Salmonella sp. isolates from poultry.
    Merino L; Trejo FM; De Antoni G; Golowczyc MA
    Food Res Int; 2019 Sep; 123():258-265. PubMed ID: 31284975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resistance of pathogenic bacteria on the surface of stainless steel depending on attachment form and efficacy of chemical sanitizers.
    Bae YM; Baek SY; Lee SY
    Int J Food Microbiol; 2012 Feb; 153(3):465-73. PubMed ID: 22225983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of bacteriophages to reduce Salmonella attachment and biofilms on hard surfaces.
    Gong C; Jiang X
    Poult Sci; 2017 Jun; 96(6):1838-1848. PubMed ID: 28339743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of cell surface charge and hydrophobicity on attachment of 16 Salmonella serovars to cantaloupe rind and decontamination with sanitizers.
    Ukuku DO; Fett WF
    J Food Prot; 2006 Aug; 69(8):1835-43. PubMed ID: 16924907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of temperature, pH, and water activity on biofilm formation by Salmonella enterica enteritidis PT4 on stainless steel surfaces as indicated by the bead vortexing method and conductance measurements.
    Giaouris E; Chorianopoulos N; Nychas GJ
    J Food Prot; 2005 Oct; 68(10):2149-54. PubMed ID: 16245722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilization of
    Ruengvisesh S; Wenbap P; Damrongsaktrakul P; Santiakachai S; Kasemsukwimol W; Chitvittaya S; Painsawat Y; Phung-On I; Tuitemwong P
    J Microbiol Biotechnol; 2023 Jun; 33(6):771-779. PubMed ID: 36959178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preacclimation alters Salmonella Enteritidis surface properties and its initial attachment to food contact surfaces.
    Yang Y; Kumar A; Zheng Q; Yuk HG
    Colloids Surf B Biointerfaces; 2015 Apr; 128():577-585. PubMed ID: 25800356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biofilm formation of O157 and non-O157 Shiga toxin-producing Escherichia coli and multidrug-resistant and susceptible Salmonella typhimurium and newport and their inactivation by sanitizers.
    Fouladkhah A; Geornaras I; Sofos JN
    J Food Sci; 2013 Jun; 78(6):M880-6. PubMed ID: 23601046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of nutritional and environmental conditions on Salmonella sp. biofilm formation.
    Speranza B; Corbo MR; Sinigaglia M
    J Food Sci; 2011; 76(1):M12-6. PubMed ID: 21535687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of biofilm formation by pathogenic and spoilage microorganisms under conditions that mimic the poultry, meat, and egg processing industries.
    Iñiguez-Moreno M; Gutiérrez-Lomelí M; Avila-Novoa MG
    Int J Food Microbiol; 2019 Aug; 303():32-41. PubMed ID: 31129476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery and transfer of Salmonella typhimurium from four different domestic food contact surfaces.
    Moore G; Blair IS; McDowell DA
    J Food Prot; 2007 Oct; 70(10):2273-80. PubMed ID: 17969608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biofilm formation of Salmonella serotypes in simulated meat processing environments and its relationship to cell characteristics.
    Wang H; Ding S; Dong Y; Ye K; Xu X; Zhou G
    J Food Prot; 2013 Oct; 76(10):1784-9. PubMed ID: 24112581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autoinducer-2 activity of gram-negative foodborne pathogenic bacteria and its influence on biofilm formation.
    Yoon Y; Sofos JN
    J Food Sci; 2008 Apr; 73(3):M140-7. PubMed ID: 18387117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.