BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 29257975)

  • 1. Optimization of cinnamon oil nanoemulsions using phase inversion temperature method: Impact of oil phase composition and surfactant concentration.
    Chuesiang P; Siripatrawan U; Sanguandeekul R; McLandsborough L; Julian McClements D
    J Colloid Interface Sci; 2018 Mar; 514():208-216. PubMed ID: 29257975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of orange oil nanoemulsion formation by isothermal low-energy methods: influence of the oil phase, surfactant, and temperature.
    Chang Y; McClements DJ
    J Agric Food Chem; 2014 Mar; 62(10):2306-12. PubMed ID: 24564878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physicochemical properties and antimicrobial efficacy of carvacrol nanoemulsions formed by spontaneous emulsification.
    Chang Y; McLandsborough L; McClements DJ
    J Agric Food Chem; 2013 Sep; 61(37):8906-13. PubMed ID: 23998790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of stable nanoemulsions by ultrasound-assisted two-step emulsification process for topical drug delivery: Effect of oil phase composition and surfactant concentration and loratadine as ripening inhibitor.
    Sarheed O; Shouqair D; Ramesh KVRNS; Khaleel T; Amin M; Boateng J; Drechsler M
    Int J Pharm; 2020 Feb; 576():118952. PubMed ID: 31843549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of isothermal low-energy nanoemulsion formation: hydrocarbon oil, non-ionic surfactant, and water systems.
    Komaiko J; McClements DJ
    J Colloid Interface Sci; 2014 Jul; 425():59-66. PubMed ID: 24776664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of vitamin E-enriched nanoemulsions: factors affecting particle size using spontaneous emulsification.
    Saberi AH; Fang Y; McClements DJ
    J Colloid Interface Sci; 2013 Feb; 391():95-102. PubMed ID: 23116862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of nonionic and ionic surfactants on the antifungal and mycotoxin inhibitory efficacy of cinnamon oil nanoemulsions.
    Wu D; Lu J; Zhong S; Schwarz P; Chen B; Rao J
    Food Funct; 2019 May; 10(5):2817-2827. PubMed ID: 31049507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilization of phase inversion temperature nanoemulsions by surfactant displacement.
    Rao J; McClements DJ
    J Agric Food Chem; 2010 Jun; 58(11):7059-66. PubMed ID: 20476765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of glycerol on formation, stability, and properties of vitamin-E enriched nanoemulsions produced using spontaneous emulsification.
    Saberi AH; Fang Y; McClements DJ
    J Colloid Interface Sci; 2013 Dec; 411():105-13. PubMed ID: 24050638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-energy formation of edible nanoemulsions: factors influencing droplet size produced by emulsion phase inversion.
    Ostertag F; Weiss J; McClements DJ
    J Colloid Interface Sci; 2012 Dec; 388(1):95-102. PubMed ID: 22981587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vitamin E-enriched nanoemulsions formed by emulsion phase inversion: factors influencing droplet size and stability.
    Mayer S; Weiss J; McClements DJ
    J Colloid Interface Sci; 2013 Jul; 402():122-30. PubMed ID: 23660020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of nanoemulsions using carvacrol/MCT-(Oleic acid-potassium oleate)/ Tween 80 ®- water system by low energy method.
    Santamaría E; Maestro A; Vilchez S; González C
    Heliyon; 2023 Jun; 9(6):e16967. PubMed ID: 37332948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoemulsions prepared by a low-energy emulsification method applied to edible films.
    Bilbao-Sáinz C; Avena-Bustillos RJ; Wood DF; Williams TG; McHugh TH
    J Agric Food Chem; 2010 Nov; 58(22):11932-8. PubMed ID: 20977191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly stable concentrated nanoemulsions by the phase inversion composition method at elevated temperature.
    Yu L; Li C; Xu J; Hao J; Sun D
    Langmuir; 2012 Oct; 28(41):14547-52. PubMed ID: 22985401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of vitamin D nanoemulsion-based delivery systems by spontaneous emulsification: factors affecting particle size and stability.
    Guttoff M; Saberi AH; McClements DJ
    Food Chem; 2015 Mar; 171():117-22. PubMed ID: 25308650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation and stabilization of nanoemulsions using biosurfactants: Rhamnolipids.
    Bai L; McClements DJ
    J Colloid Interface Sci; 2016 Oct; 479():71-79. PubMed ID: 27372634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physical properties and antimicrobial efficacy of thyme oil nanoemulsions: influence of ripening inhibitors.
    Chang Y; McLandsborough L; McClements DJ
    J Agric Food Chem; 2012 Dec; 60(48):12056-63. PubMed ID: 23140446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on the Effect of Oil and Surfactant on the Formation of Alginate-Based O/W Lidocaine Nanocarriers Using Nanoemulsion Template.
    Sarheed O; Dibi M; Ramesh KVRNS
    Pharmaceutics; 2020 Dec; 12(12):. PubMed ID: 33348692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of surfactant charge on antimicrobial efficacy of surfactant-stabilized thyme oil nanoemulsions.
    Ziani K; Chang Y; McLandsborough L; McClements DJ
    J Agric Food Chem; 2011 Jun; 59(11):6247-55. PubMed ID: 21520914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability and tunability of O/W nanoemulsions prepared by phase inversion composition.
    Hessien M; Singh N; Kim C; Prouzet E
    Langmuir; 2011 Mar; 27(6):2299-307. PubMed ID: 21288034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.