BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 29257978)

  • 1. Superior flame retardancy and smoke suppression of epoxy-based composites with phosphorus/nitrogen co-doped graphene.
    Feng Y; He C; Wen Y; Ye Y; Zhou X; Xie X; Mai YW
    J Hazard Mater; 2018 Mar; 346():140-151. PubMed ID: 29257978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsically reactive hyperbranched interface governs graphene oxide dispersion and crosslinking in epoxy for enhanced flame retardancy.
    Li H; Liu C; Zhu J; Huan X; Xu K; Geng H; Chen X; Li T; Deng D; Ding W; Zu L; Ge L; Jia X; Yang X
    J Colloid Interface Sci; 2024 Jun; 672():465-476. PubMed ID: 38852349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing Flame Retardancy and Smoke Suppression in Epoxy Resin Composites with Sulfur-Phosphorous Reactive Flame Retardant.
    Ma X; Kang N; Zhang Y; Min Y; Yang J; Ban D; Zhao W
    Molecules; 2023 Dec; 29(1):. PubMed ID: 38202810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A graphene@Cu-MOF hybrid synthesized by mechanical ball milling method and its flame retardancy and smoke suppression effect on EP.
    Zhang G; Wu W; Yao M; Cui Y; Jiao Y; Qu H; Xu J
    Chemosphere; 2024 Jan; 346():140521. PubMed ID: 37925028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Simple and Efficient Magnesium Hydroxide Modification Strategy for Flame-Retardancy Epoxy Resin.
    Dun L; Ouyang Z; Sun Q; Yue X; Wu G; Li B; Kang W; Wang Y
    Polymers (Basel); 2024 May; 16(11):. PubMed ID: 38891418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel P/N/Si/Zn-containing hybrid flame retardant for enhancing flame retardancy and smoke suppression of epoxy resins.
    Li F; Huang Z; Liu C; Yang M; Wu J; Rao W; Yu C
    RSC Adv; 2024 Mar; 14(12):8204-8213. PubMed ID: 38469190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of a Carrageenan-Iron Complex and Its Effect on Flame Retardancy and Smoke Suppression for Waterborne Epoxy.
    Wang N; Teng H; Zhang X; Zhang J; Li L; Zhang J; Fang Q
    Polymers (Basel); 2019 Oct; 11(10):. PubMed ID: 31615046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of hierarchical SiO
    Liu C; Tao J; Wu T; Zhao HB; Yu C; Rao W
    Chemosphere; 2023 Nov; 342():140184. PubMed ID: 37716559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Situ-Generated Heat-Resistant Hydrogen-Bonded Organic Framework for Remarkably Improving Both Flame Retardancy and Mechanical Properties of Epoxy Composites.
    Zou Y; Cui W; Chen D; Luo F; Li H
    ACS Appl Mater Interfaces; 2023 Oct; 15(40):47463-47474. PubMed ID: 37750712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of PEDMCD as a flame retardant and its application in epoxy resins.
    Zhang Y; Yang W
    RSC Adv; 2021 Jan; 11(5):2756-2766. PubMed ID: 35424242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flame retardant, high mechanical strength, transparent and water-resistant epoxy composites modified with chitosan derivatives.
    Guo S; Wu K; Pan Z; Zhou H; Zhou C
    Int J Biol Macromol; 2024 Mar; 260(Pt 2):129580. PubMed ID: 38246442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing char formation of flame retardant epoxy composites: Onigiri-like ZIF-67 modification with carboxymethyl β-cyclodextrin crosslinking.
    Li Q; Han Z; Song X; Pan YT; Geng Z; Vahabi H; Realinho V; Yang R
    Carbohydr Polym; 2024 Jun; 333():121980. PubMed ID: 38494206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal Degradation Behavior of Epoxy Resin Containing Modified Carbon Nanotubes.
    Bao X; Wu F; Wang J
    Polymers (Basel); 2021 Sep; 13(19):. PubMed ID: 34641148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Composite Flame Retardants Based on Conjugated Microporous Polymer Hollow Nanospheres with Excellent Flame Retardancy.
    Ma C; Su M; Zhu Z
    ACS Omega; 2024 Mar; 9(9):10478-10487. PubMed ID: 38463341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth of copper organophosphate nanosheets on graphene oxide to improve fire safety and mechanical strength of epoxy resins.
    Rao W; Tao J; Yang F; Wu T; Yu C; Zhao HB
    Chemosphere; 2023 Jan; 311(Pt 2):137047. PubMed ID: 36336017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bio-Based Alkali Lignin Cooperative Systems for Improving the Flame Retardant and Mechanical Properties of Rigid Polyurethane Foam.
    Li X; Liu C; An X; Niu L; Feng J; Liu Z
    Polymers (Basel); 2023 Dec; 15(24):. PubMed ID: 38139960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of a Reactive Template-Induced Core-Shell PZS@ZIF-67 Composite Microspheres and Its Application in Epoxy Composites.
    Song K; Wang Y; Ruan F; Yang W; Fang Z; Zheng D; Li X; Li N; Qiao M; Liu J
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flame retardancy and wear resistance of epoxy composites modified by whisker-shaped nickel phyllosilicate and microencapsulated ammonium polyphosphate.
    Nie S; Zhai W; Xu Y; He W; Yang J
    RSC Adv; 2023 Oct; 13(42):29657-29667. PubMed ID: 37822659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fully bio-based and intrinsically flame retardant unsaturated polyester cross-linked with isosorbide-based diluents.
    Chu F; Wang W; Zhou Y; Xu Z; Zou B; Jiang X; Hu Y; Hu W
    Chemosphere; 2023 Dec; 344():140371. PubMed ID: 37820874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protective and Flame-Retardant Bifunctional Epoxy-Based Nanocomposite Coating by Intercomponent Synergy between Modified CaAl-LDH and rGO.
    Murtaza H; Zhao J; Tabish M; Wang J; Mubeen M; Zhang J; Zhang S; Fan B
    ACS Appl Mater Interfaces; 2024 Mar; 16(10):13114-13131. PubMed ID: 38427459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.