These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 29257989)

  • 1. Valorizing waste iron powder in biogas production: Hydrogen sulfide control and process performances.
    Andriamanohiarisoamanana FJ; Shirai T; Yamashiro T; Yasui S; Iwasaki M; Ihara I; Nishida T; Tangtaweewipat S; Umetsu K
    J Environ Manage; 2018 Feb; 208():134-141. PubMed ID: 29257989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prospects for biogas production and H
    Farghali M; Andriamanohiarisoamanana FJ; Ahmed MM; Kotb S; Yamamoto Y; Iwasaki M; Yamashiro T; Umetsu K
    Waste Manag; 2020 Jan; 101():141-149. PubMed ID: 31610475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The control of H2S in biogas using iron ores as in situ desulfurizers during anaerobic digestion process.
    Zhou Q; Jiang X; Li X; Jiang W
    Appl Microbiol Biotechnol; 2016 Sep; 100(18):8179-89. PubMed ID: 27209038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic co-digestion of forage radish and dairy manure in complete mix digesters.
    Belle AJ; Lansing S; Mulbry W; Weil RR
    Bioresour Technol; 2015 Feb; 178():230-237. PubMed ID: 25278111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implications from distinct sulfate-reducing bacteria populations between cattle manure and digestate in the elucidation of H
    St-Pierre B; Wright AG
    Appl Microbiol Biotechnol; 2017 Jul; 101(13):5543-5556. PubMed ID: 28389712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impacts of iron oxide and titanium dioxide nanoparticles on biogas production: Hydrogen sulfide mitigation, process stability, and prospective challenges.
    Farghali M; Andriamanohiarisoamanana FJ; Ahmed MM; Kotb S; Yamashiro T; Iwasaki M; Umetsu K
    J Environ Manage; 2019 Jun; 240():160-167. PubMed ID: 30933820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics and mechanisms of H
    Tian G; Xi J; Yeung M; Ren G
    Sci Total Environ; 2020 Jul; 724():137977. PubMed ID: 32247972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of ammonium chloride dosage on hydrogen sulfide in-situ prevention during waste activated sludge anaerobic digestion.
    Han Y; Qu Q; Li J; Zhuo Y; Zhong C; Peng D
    Bioresour Technol; 2019 Mar; 276():91-96. PubMed ID: 30611091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of anaerobic co-digestion of dairy manure with food wastes via bio-methane potential assay and CSTR reactor.
    Ye Y; Zamalloa C; Lin H; Yan M; Schmidt D; Hu B
    J Environ Sci Health B; 2015; 50(3):217-27. PubMed ID: 25602155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous H
    Mahdy A; Song Y; Salama A; Qiao W; Dong R
    Chemosphere; 2020 Aug; 253():126687. PubMed ID: 32298914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biogas production from co-digestion of dairy manure and food waste.
    El-Mashad HM; Zhang R
    Bioresour Technol; 2010 Jun; 101(11):4021-8. PubMed ID: 20137909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production.
    Nges IA; Escobar F; Fu X; Björnsson L
    Waste Manag; 2012 Jan; 32(1):53-9. PubMed ID: 21975301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological elimination of a high concentration of hydrogen sulfide from landfill biogas.
    Ibrahim R; El Hassni A; Navaee-Ardeh S; Cabana H
    Environ Sci Pollut Res Int; 2022 Jan; 29(1):431-443. PubMed ID: 34331640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anaerobic digestion of Chinese cabbage waste silage with swine manure for biogas production: batch and continuous study.
    Kafle GK; Bhattarai S; Kim SH; Chen L
    Environ Technol; 2014; 35(21-24):2708-17. PubMed ID: 25176305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term evaluation of activated carbon as an adsorbent for biogas desulfurization.
    Ou HW; Fang ML; Chou MS; Chang HY; Shiao TF
    J Air Waste Manag Assoc; 2020 Jun; 70(6):641-648. PubMed ID: 32343197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential of biogas production from manure of dairy cattle fed on natural soil supplement rich in iron under batch and semi-continuous anaerobic digestion.
    Farghali M; Mayumi M; Syo K; Satoshi A; Seiichi Y; Takashima S; Ono H; Ap Y; Yamashiro T; Ahmed MM; Kotb S; Iwasaki M; Ihara I; Umetsu K
    Bioresour Technol; 2020 Aug; 309():123298. PubMed ID: 32289655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The anaerobic co-digestion of fruit and vegetable waste and horse manure mixtures in a bench-scale, two-phase anaerobic digestion system.
    Smith DB; Almquist CB
    Environ Technol; 2014; 35(5-8):859-67. PubMed ID: 24645468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new method for the simultaneous enhancement of methane yield and reduction of hydrogen sulfide production in the anaerobic digestion of waste activated sludge.
    Dai X; Hu C; Zhang D; Chen Y
    Bioresour Technol; 2017 Nov; 243():914-921. PubMed ID: 28738546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ biogas upgrading and enhancement of anaerobic digestion of cheese whey by addition of scrap or powder zero-valent iron (ZVI).
    Charalambous P; Vyrides I
    J Environ Manage; 2021 Feb; 280():111651. PubMed ID: 33221048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of liquid surface area on hydrogen sulfide oxidation during micro-aeration in dairy manure digesters.
    Mulbry W; Selmer K; Lansing S
    PLoS One; 2017; 12(10):e0185738. PubMed ID: 28976998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.