These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

590 related articles for article (PubMed ID: 29258014)

  • 41. Emerging Concepts on the Gut Microbiome and Multiple Sclerosis.
    Glenn JD; Mowry EM
    J Interferon Cytokine Res; 2016 Jun; 36(6):347-57. PubMed ID: 27145057
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Review of the relation between gut microbiome, metabolic disease and hypertension].
    Barna I; Nyúl D; Szentes T; Schwab R
    Orv Hetil; 2018 Mar; 159(9):346-351. PubMed ID: 29480046
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Quantitative microbiome profiling links gut community variation to microbial load.
    Vandeputte D; Kathagen G; D'hoe K; Vieira-Silva S; Valles-Colomer M; Sabino J; Wang J; Tito RY; De Commer L; Darzi Y; Vermeire S; Falony G; Raes J
    Nature; 2017 Nov; 551(7681):507-511. PubMed ID: 29143816
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enteroendocrine Cells: Metabolic Relays between Microbes and Their Host.
    Plovier H; Cani PD
    Endocr Dev; 2017; 32():139-164. PubMed ID: 28898875
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Visualization of Metabolic Interaction Networks in Microbial Communities Using VisANT 5.0.
    Granger BR; Chang YC; Wang Y; DeLisi C; Segrè D; Hu Z
    PLoS Comput Biol; 2016 Apr; 12(4):e1004875. PubMed ID: 27081850
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genome-resolved metaproteomic characterization of preterm infant gut microbiota development reveals species-specific metabolic shifts and variabilities during early life.
    Xiong W; Brown CT; Morowitz MJ; Banfield JF; Hettich RL
    Microbiome; 2017 Jul; 5(1):72. PubMed ID: 28693612
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Computational systems biology and in silico modeling of the human microbiome.
    Borenstein E
    Brief Bioinform; 2012 Nov; 13(6):769-80. PubMed ID: 22589385
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Application of a hierarchical enzyme classification method reveals the role of gut microbiome in human metabolism.
    Mohammed A; Guda C
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S16. PubMed ID: 26099921
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Species Deletions from Microbiome Consortia Reveal Key Metabolic Interactions between Gut Microbes.
    Gutiérrez N; Garrido D
    mSystems; 2019 Jul; 4(4):. PubMed ID: 31311843
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Causal inference on microbiome-metabolome relations in observational host-microbiome data via in silico in vivo association pattern analyses.
    Hertel J; Heinken A; Fässler D; Thiele I
    Cell Rep Methods; 2023 Oct; 3(10):100615. PubMed ID: 37848031
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Systems biology of the human microbiome.
    Peñalver Bernabé B; Cralle L; Gilbert JA
    Curr Opin Biotechnol; 2018 Jun; 51():146-153. PubMed ID: 29453029
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Inferring composition and function of the human gut microbiome in time and space: A review of genome-scale metabolic modelling tools.
    Altamirano Á; Saa PA; Garrido D
    Comput Struct Biotechnol J; 2020; 18():3897-3904. PubMed ID: 33335687
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Exploring and Understanding the Biochemical Diversity of the Human Microbiota.
    Koppel N; Balskus EP
    Cell Chem Biol; 2016 Jan; 23(1):18-30. PubMed ID: 26933733
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox.
    Becker SA; Feist AM; Mo ML; Hannum G; Palsson BØ; Herrgard MJ
    Nat Protoc; 2007; 2(3):727-38. PubMed ID: 17406635
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Implication of gut microbiota metabolites in cardiovascular and metabolic diseases.
    Brial F; Le Lay A; Dumas ME; Gauguier D
    Cell Mol Life Sci; 2018 Nov; 75(21):3977-3990. PubMed ID: 30101405
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The impact of the gut microbiome on toxigenic bacteria.
    Koosha RZ; Fazel P; Sedighian H; Behzadi E; Ch MH; Imani Fooladi AA
    Microb Pathog; 2021 Nov; 160():105188. PubMed ID: 34530074
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An extended reconstruction of human gut microbiota metabolism of dietary compounds.
    Blasco T; Pérez-Burillo S; Balzerani F; Hinojosa-Nogueira D; Lerma-Aguilera A; Pastoriza S; Cendoya X; Rubio Á; Gosalbes MJ; Jiménez-Hernández N; Pilar Francino M; Apaolaza I; Rufián-Henares JÁ; Planes FJ
    Nat Commun; 2021 Aug; 12(1):4728. PubMed ID: 34354065
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interaction between gut microbiota and toll-like receptor: from immunity to metabolism.
    Yiu JH; Dorweiler B; Woo CW
    J Mol Med (Berl); 2017 Jan; 95(1):13-20. PubMed ID: 27639584
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pathways and functions of gut microbiota metabolism impacting host physiology.
    Krishnan S; Alden N; Lee K
    Curr Opin Biotechnol; 2015 Dec; 36():137-45. PubMed ID: 26340103
    [TBL] [Abstract][Full Text] [Related]  

  • 60. From next-generation sequencing to systematic modeling of the gut microbiome.
    Ji B; Nielsen J
    Front Genet; 2015; 6():219. PubMed ID: 26157455
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.