These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
726 related articles for article (PubMed ID: 29258081)
21. Endoscopic diagnosis and treatment planning for colorectal polyps using a deep-learning model. Song EM; Park B; Ha CA; Hwang SW; Park SH; Yang DH; Ye BD; Myung SJ; Yang SK; Kim N; Byeon JS Sci Rep; 2020 Jan; 10(1):30. PubMed ID: 31913337 [TBL] [Abstract][Full Text] [Related]
22. Validation of a simple classification system for endoscopic diagnosis of small colorectal polyps using narrow-band imaging. Hewett DG; Kaltenbach T; Sano Y; Tanaka S; Saunders BP; Ponchon T; Soetikno R; Rex DK Gastroenterology; 2012 Sep; 143(3):599-607.e1. PubMed ID: 22609383 [TBL] [Abstract][Full Text] [Related]
23. Novel computer-assisted diagnosis system for endoscopic disease activity in patients with ulcerative colitis. Ozawa T; Ishihara S; Fujishiro M; Saito H; Kumagai Y; Shichijo S; Aoyama K; Tada T Gastrointest Endosc; 2019 Feb; 89(2):416-421.e1. PubMed ID: 30367878 [TBL] [Abstract][Full Text] [Related]
25. Automatic colonic polyp detection using integration of modified deep residual convolutional neural network and ensemble learning approaches. Liew WS; Tang TB; Lin CH; Lu CK Comput Methods Programs Biomed; 2021 Jul; 206():106114. PubMed ID: 33984661 [TBL] [Abstract][Full Text] [Related]
26. Massive-training artificial neural network (MTANN) for reduction of false positives in computer-aided detection of polyps: Suppression of rectal tubes. Suzuki K; Yoshida H; Näppi J; Dachman AH Med Phys; 2006 Oct; 33(10):3814-24. PubMed ID: 17089846 [TBL] [Abstract][Full Text] [Related]
27. [Application of artificial intelligence for detection and classification of colon polyps]. Wang X; Huang J; Ji X; Zhu Z Nan Fang Yi Ke Da Xue Xue Bao; 2021 Feb; 41(2):310-313. PubMed ID: 33624608 [TBL] [Abstract][Full Text] [Related]
28. Intraprocedure Artificial Intelligence Alert System for Colonoscopy Examination. Hsu CM; Hsu CC; Hsu ZM; Chen TH; Kuo T Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772251 [TBL] [Abstract][Full Text] [Related]
29. An improved deep learning approach and its applications on colonic polyp images detection. Wang W; Tian J; Zhang C; Luo Y; Wang X; Li J BMC Med Imaging; 2020 Jul; 20(1):83. PubMed ID: 32698839 [TBL] [Abstract][Full Text] [Related]
30. Automatic anatomical classification of colonoscopic images using deep convolutional neural networks. Saito H; Tanimoto T; Ozawa T; Ishihara S; Fujishiro M; Shichijo S; Hirasawa D; Matsuda T; Endo Y; Tada T Gastroenterol Rep (Oxf); 2021 Jun; 9(3):226-233. PubMed ID: 34316372 [TBL] [Abstract][Full Text] [Related]
31. Automated endoscopic detection and classification of colorectal polyps using convolutional neural networks. Ozawa T; Ishihara S; Fujishiro M; Kumagai Y; Shichijo S; Tada T Therap Adv Gastroenterol; 2020; 13():1756284820910659. PubMed ID: 32231710 [TBL] [Abstract][Full Text] [Related]
32. Colonic polyps: complementary role of computer-aided detection in CT colonography. Summers RM; Jerebko AK; Franaszek M; Malley JD; Johnson CD Radiology; 2002 Nov; 225(2):391-9. PubMed ID: 12409571 [TBL] [Abstract][Full Text] [Related]
33. A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification. Al-Antari MA; Al-Masni MA; Choi MT; Han SM; Kim TS Int J Med Inform; 2018 Sep; 117():44-54. PubMed ID: 30032964 [TBL] [Abstract][Full Text] [Related]
34. Stable polyp-scene classification via subsampling and residual learning from an imbalanced large dataset. Itoh H; Roth H; Oda M; Misawa M; Mori Y; Kudo SE; Mori K Healthc Technol Lett; 2019 Dec; 6(6):237-242. PubMed ID: 32038864 [TBL] [Abstract][Full Text] [Related]
35. Improving Automatic Polyp Detection Using CNN by Exploiting Temporal Dependency in Colonoscopy Video. Qadir HA; Balasingham I; Solhusvik J; Bergsland J; Aabakken L; Shin Y IEEE J Biomed Health Inform; 2020 Jan; 24(1):180-193. PubMed ID: 30946683 [TBL] [Abstract][Full Text] [Related]
36. [Clinical application of convolutional neural network in pathological diagnosis of metastatic lymph nodes of gastric cancer]. Wang SZ; Wang JG; Lu Y; Zhang YJ; Xin FJ; Liu SL; Zhang XX; Liu GW; Li S; Sui D; Wang DS Zhonghua Wai Ke Za Zhi; 2019 Dec; 57(12):934-938. PubMed ID: 31826599 [No Abstract] [Full Text] [Related]
37. Mixture of expert 3D massive-training ANNs for reduction of multiple types of false positives in CAD for detection of polyps in CT colonography. Suzuki K; Yoshida H; Näppi J; Armato SG; Dachman AH Med Phys; 2008 Feb; 35(2):694-703. PubMed ID: 18383691 [TBL] [Abstract][Full Text] [Related]
38. Automated Polyp Detection in Colonoscopy Videos Using Shape and Context Information. Tajbakhsh N; Gurudu SR; Liang J IEEE Trans Med Imaging; 2016 Feb; 35(2):630-44. PubMed ID: 26462083 [TBL] [Abstract][Full Text] [Related]
39. Two-stage deep-learning-based colonoscopy polyp detection incorporating fisheye and reflection correction. Hsu CM; Chen TH; Hsu CC; Wu CH; Lin CJ; Le PH; Lin CY; Kuo T J Gastroenterol Hepatol; 2024 Apr; 39(4):733-739. PubMed ID: 38225761 [TBL] [Abstract][Full Text] [Related]
40. Development of a computer-aided detection system for colonoscopy and a publicly accessible large colonoscopy video database (with video). Misawa M; Kudo SE; Mori Y; Hotta K; Ohtsuka K; Matsuda T; Saito S; Kudo T; Baba T; Ishida F; Itoh H; Oda M; Mori K Gastrointest Endosc; 2021 Apr; 93(4):960-967.e3. PubMed ID: 32745531 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]