BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 29258218)

  • 1. In Vitro Investigation of the Interaction of Tolbutamide and Losartan with Human Serum Albumin in Hyperglycemia States.
    Szkudlarek A; Pentak D; Ploch A; Pożycka J; Maciążek-Jurczyk M
    Molecules; 2017 Dec; 22(12):. PubMed ID: 29258218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Temperature on Tolbutamide Binding to Glycated Serum Albumin.
    Szkudlarek A; Pentak D; Ploch A; Pożycka J; Maciążek-Jurczyk M
    Molecules; 2017 Mar; 22(4):. PubMed ID: 28362348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding of tolbutamide to glycated human serum albumin.
    Joseph KS; Anguizola J; Hage DS
    J Pharm Biomed Anal; 2011 Jan; 54(2):426-32. PubMed ID: 20880646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Piracetam on Gliclazide-Glycated Human Serum Albumin Interaction. A Spectrofluorometric Study.
    Szkudlarek A; Pożycka J; Maciążek-Jurczyk M
    Molecules; 2018 Dec; 24(1):. PubMed ID: 30597970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methylglyoxal induced glycation and aggregation of human serum albumin: Biochemical and biophysical approach.
    Ahmed A; Shamsi A; Khan MS; Husain FM; Bano B
    Int J Biol Macromol; 2018 Jul; 113():269-276. PubMed ID: 29481950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on the interactions of sulfonylurea antidiabetic drugs with normal and glycated human serum albumin by capillary electrophoresis-frontal analysis.
    Michalcová L; Glatz Z
    J Sep Sci; 2016 Sep; 39(18):3631-7. PubMed ID: 27449705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fructose-human serum albumin interaction undergoes numerous biophysical and biochemical changes before forming AGEs and aggregates.
    Zaman A; Arif Z; Moinuddin ; Alam K
    Int J Biol Macromol; 2018 Apr; 109():896-906. PubMed ID: 29133088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of tolazamide binding with glycated and normal human serum albumin by using high-performance affinity chromatography.
    Tao P; Li Z; Woolfork AG; Hage DS
    J Pharm Biomed Anal; 2019 Mar; 166():273-280. PubMed ID: 30682693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alteration of human serum albumin tertiary structure induced by glycation. Spectroscopic study.
    Szkudlarek A; Maciążek-Jurczyk M; Chudzik M; Równicka-Zubik J; Sułkowska A
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 153():560-5. PubMed ID: 26433342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Vitro Investigations of Acetohexamide Binding to Glycated Serum Albumin in the Presence of Fatty Acid.
    Szkudlarek A; Wilk M; Maciążek-Jurczyk M
    Molecules; 2020 May; 25(10):. PubMed ID: 32429512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation into the interaction of losartan with human serum albumin and glycated human serum albumin by spectroscopic and molecular dynamics simulation techniques: A comparison study.
    Moeinpour F; Mohseni-Shahri FS; Malaekeh-Nikouei B; Nassirli H
    Chem Biol Interact; 2016 Sep; 257():4-13. PubMed ID: 27470663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in Glycated Human Serum Albumin Binding Affinity for Losartan in the Presence of Fatty Acids In Vitro Spectroscopic Analysis.
    Szkudlarek A; Pożycka J; Kulig K; Owczarzy A; Rogóż W; Maciążek-Jurczyk M
    Molecules; 2022 Jan; 27(2):. PubMed ID: 35056715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of non-enzymatic glycation in human serum albumin. Spectroscopic analysis.
    Szkudlarek A; Sułkowska A; Maciążek-Jurczyk M; Chudzik M; Równicka-Zubik J
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 152():645-53. PubMed ID: 25735846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-enzymatic glycation enhances human serum albumin binding capacity to sodium fluorescein at room temperature: A spectroscopic analysis.
    Fatima S; Anwar T; Ahmad N; Islam A; Sen P
    Clin Chim Acta; 2017 Jun; 469():180-186. PubMed ID: 28412196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic physicochemical insights into glycation and drug binding by serum albumin: Implications in diabetic conditions.
    Ghosh R; Kishore N
    Biochimie; 2022 Feb; 193():16-37. PubMed ID: 34688791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational investigation of inhibitory mechanism of flavonoids as bovine serum albumin anti-glycation agents.
    Johari A; Moosavi-Movahedi AA; Amanlou M
    Daru; 2014 Dec; 22(1):79. PubMed ID: 25498599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperglycemia induced structural and functional changes in human serum albumin of diabetic patients: a physico-chemical study.
    Neelofar K; Arif Z; Alam K; Ahmad J
    Mol Biosyst; 2016 Jul; 12(8):2481-9. PubMed ID: 27226040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of glycation on human serum albumin-zinc interaction: a biophysical study.
    Iqbal S; Qais FA; Alam MM; Naseem I
    J Biol Inorg Chem; 2018 May; 23(3):447-458. PubMed ID: 29619544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of affinity maps for thiazolidinediones with human serum albumin using affinity microcolumns. I. Studies of effects by glycation on multisite drug binding.
    Sharmeen S; Woolfork A; Hage DS
    J Chromatogr B Analyt Technol Biomed Life Sci; 2024 Apr; 1236():124070. PubMed ID: 38460447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of glycosylation of hypoglycaemic drug binding to serum albumin.
    Koyama H; Sugioka N; Uno A; Mori S; Nakajima K
    Biopharm Drug Dispos; 1997 Dec; 18(9):791-801. PubMed ID: 9429743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.