These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 29258220)
21. Antioxidant Sensing by Spiropyrans: Substituent Effects and NMR Spectroscopic Studies. Garcia J; Addison JB; Liu SZ; Lu S; Faulkner AL; Hodur BM; Balmond EI; Or VW; Yun JH; Trevino K; Shen B; Shaw JT; Frank NL; Louie AY J Phys Chem B; 2019 Aug; 123(31):6799-6809. PubMed ID: 31284715 [TBL] [Abstract][Full Text] [Related]
22. Photoswitchable DNA-binding properties of a photochromic spirooxazine derivative. Ihmels H; Mattay J; May F; Thomas L Org Biomol Chem; 2013 Aug; 11(31):5184-8. PubMed ID: 23824474 [TBL] [Abstract][Full Text] [Related]
23. Rational design, synthesis, and characterization of highly fluorescent optical switches for high-contrast optical lock-in detection (OLID) imaging microscopy in living cells. Petchprayoon C; Yan Y; Mao S; Marriott G Bioorg Med Chem; 2011 Feb; 19(3):1030-40. PubMed ID: 20674372 [TBL] [Abstract][Full Text] [Related]
24. Twenty natural amino acids identification by a photochromic sensor chip. Qin M; Li F; Huang Y; Ran W; Han D; Song Y Anal Chem; 2015 Jan; 87(2):837-42. PubMed ID: 25517682 [TBL] [Abstract][Full Text] [Related]
25. A Photochromic Sensor Microchip for High-Performance Multiplex Metal Ion Detection. Qin M; Li F; Song Y Methods Mol Biol; 2019; 2027():49-59. PubMed ID: 31309471 [TBL] [Abstract][Full Text] [Related]
26. Optically switchable chelates: optical control and sensing of metal ions. Sakata T; Jackson DK; Mao S; Marriott G J Org Chem; 2008 Jan; 73(1):227-33. PubMed ID: 18072788 [TBL] [Abstract][Full Text] [Related]
27. Highly Efficient Förster Resonance Energy Transfer Modulations of Dual-AIEgens between a Tetraphenylethylene Donor and a Merocyanine Acceptor in Photo-Switchable [2]Rotaxanes and Reversible Photo-Patterning Applications. Nhien PQ; Cuc TTK; Khang TM; Wu CH; Hue BTB; Wu JI; Mansel BW; Chen HL; Lin HC ACS Appl Mater Interfaces; 2020 Oct; 12(42):47921-47938. PubMed ID: 32936605 [TBL] [Abstract][Full Text] [Related]
28. Chiral Symmetry Breaking of Spiropyrans and Spirooxazines by Dynamic Enantioselective Crystallization. Ishikawa H; Uemura N; Saito R; Yoshida Y; Mino T; Kasashima Y; Sakamoto M Chemistry; 2019 Jul; 25(41):9758-9763. PubMed ID: 31063242 [TBL] [Abstract][Full Text] [Related]
29. Isomerization, Protonation, and Hydrolysis Properties of Naphthalimide-Containing Spiropyran in Aqueous Media. Shiraishi Y; Oshima T; Hirai T J Phys Chem B; 2024 Sep; 128(36):8797-8806. PubMed ID: 39215717 [TBL] [Abstract][Full Text] [Related]
30. Photochromic, thermochromic, and fluorescent spirooxazines and naphthopyrans: a spectrokinetic and thermodynamic study. di Nunzio MR; Gentili PL; Romani A; Favaro G Chemphyschem; 2008 Apr; 9(5):768-75. PubMed ID: 18335448 [TBL] [Abstract][Full Text] [Related]
33. Conductance Photoswitching of Metal-Organic Frameworks with Embedded Spiropyran. Garg S; Schwartz H; Kozlowska M; Kanj AB; Müller K; Wenzel W; Ruschewitz U; Heinke L Angew Chem Int Ed Engl; 2019 Jan; 58(4):1193-1197. PubMed ID: 30421842 [TBL] [Abstract][Full Text] [Related]
34. [Intramolecular energy transfer in photochromic spiropyrans]. Balny C; Guglielmetti R; Mossé M; Metzger J Photochem Photobiol; 1972 Jul; 16(1):69-76. PubMed ID: 5037231 [No Abstract] [Full Text] [Related]
35. Suitability of N-propanoic acid spiropyrans and spirooxazines for use as sensitizing dyes in dye-sensitized solar cells. Johnson NM; Smolin YY; Hagaman D; Soroush M; Lau KK; Ji HF Phys Chem Chem Phys; 2017 Jan; 19(4):2981-2989. PubMed ID: 28079224 [TBL] [Abstract][Full Text] [Related]
36. Modified mesoporous MCM-41 as hosts for photochromic spirobenzopyrans. Casades I; Alvaro M; García H; Pillai MN Photochem Photobiol Sci; 2002 Mar; 1(3):219-23. PubMed ID: 12659520 [TBL] [Abstract][Full Text] [Related]