These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 29258365)
1. The effect of reactive oxygen species on cardiomyocyte differentiation of pluripotent stem cells. Wei H; Cong X Free Radic Res; 2018 Feb; 52(2):150-158. PubMed ID: 29258365 [TBL] [Abstract][Full Text] [Related]
2. Mitochondrial ROS direct the differentiation of murine pluripotent P19 cells. Pashkovskaia N; Gey U; Rödel G Stem Cell Res; 2018 Jul; 30():180-191. PubMed ID: 29957443 [TBL] [Abstract][Full Text] [Related]
3. Involvement of reactive oxygen species in cardiotrophin-1-induced proliferation of cardiomyocytes differentiated from murine embryonic stem cells. Sauer H; Neukirchen W; Rahimi G; Grünheck F; Hescheler J; Wartenberg M Exp Cell Res; 2004 Apr; 294(2):313-24. PubMed ID: 15023522 [TBL] [Abstract][Full Text] [Related]
4. The Role of Reactive Oxygen Species in In Vitro Cardiac Maturation. Momtahan N; Crosby CO; Zoldan J Trends Mol Med; 2019 Jun; 25(6):482-493. PubMed ID: 31080142 [TBL] [Abstract][Full Text] [Related]
5. Redox Homeostasis and Regulation in Pluripotent Stem Cells: Uniqueness or Versatility? Ivanova JS; Lyublinskaya OG Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681606 [TBL] [Abstract][Full Text] [Related]
6. Revisiting Mitochondrial Function and Metabolism in Pluripotent Stem Cells: Where Do We Stand in Neurological Diseases? Lopes C; Rego AC Mol Neurobiol; 2017 Apr; 54(3):1858-1873. PubMed ID: 26892627 [TBL] [Abstract][Full Text] [Related]
7. Reactive oxygen species in haematopoiesis: leukaemic cells take a walk on the wild side. Prieto-Bermejo R; Romo-González M; Pérez-Fernández A; Ijurko C; Hernández-Hernández Á J Exp Clin Cancer Res; 2018 Jun; 37(1):125. PubMed ID: 29940987 [TBL] [Abstract][Full Text] [Related]
8. Mitochondrial reactive oxygen species mediate cardiomyocyte formation from embryonic stem cells in high glucose. Crespo FL; Sobrado VR; Gomez L; Cervera AM; McCreath KJ Stem Cells; 2010 Jul; 28(7):1132-42. PubMed ID: 20506541 [TBL] [Abstract][Full Text] [Related]
9. Emerging roles of hypoxia-inducible factors and reactive oxygen species in cancer and pluripotent stem cells. Saito S; Lin YC; Tsai MH; Lin CS; Murayama Y; Sato R; Yokoyama KK Kaohsiung J Med Sci; 2015 Jun; 31(6):279-86. PubMed ID: 26043406 [TBL] [Abstract][Full Text] [Related]
10. mtDNA Mutagenesis Disrupts Pluripotent Stem Cell Function by Altering Redox Signaling. Hämäläinen RH; Ahlqvist KJ; Ellonen P; Lepistö M; Logan A; Otonkoski T; Murphy MP; Suomalainen A Cell Rep; 2015 Jun; 11(10):1614-24. PubMed ID: 26027936 [TBL] [Abstract][Full Text] [Related]
11. Involvement of p38MAPK and reactive oxygen species in icariin-induced cardiomyocyte differentiation of murine embryonic stem cells in vitro. Ding L; Liang XG; Hu Y; Zhu DY; Lou YJ Stem Cells Dev; 2008 Aug; 17(4):751-60. PubMed ID: 18484897 [TBL] [Abstract][Full Text] [Related]
12. Redox signaling (cross-talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species. Daiber A Biochim Biophys Acta; 2010; 1797(6-7):897-906. PubMed ID: 20122895 [TBL] [Abstract][Full Text] [Related]
13. Metabolic and Redox Regulation of Cardiovascular Stem Cell Biology and Pathology. Dudek J; Kutschka I; Maack C Antioxid Redox Signal; 2021 Jul; 35(3):163-181. PubMed ID: 33121253 [No Abstract] [Full Text] [Related]
14. High Glucose Attenuates Anesthetic Cardioprotection in Stem-Cell-Derived Cardiomyocytes: The Role of Reactive Oxygen Species and Mitochondrial Fission. Canfield SG; Zaja I; Godshaw B; Twaroski D; Bai X; Bosnjak ZJ Anesth Analg; 2016 May; 122(5):1269-79. PubMed ID: 26991754 [TBL] [Abstract][Full Text] [Related]
15. Monoamine oxidase A-dependent ROS formation modulates human cardiomyocyte differentiation through AKT and WNT activation. Di Sante M; Antonucci S; Pontarollo L; Cappellaro I; Segat F; Deshwal S; Greotti E; Grilo LF; Menabò R; Di Lisa F; Kaludercic N Basic Res Cardiol; 2023 Jan; 118(1):4. PubMed ID: 36670288 [TBL] [Abstract][Full Text] [Related]
16. Reactive oxygen species: are they important for haematopoiesis? Sardina JL; López-Ruano G; Sánchez-Sánchez B; Llanillo M; Hernández-Hernández A Crit Rev Oncol Hematol; 2012 Mar; 81(3):257-74. PubMed ID: 21507675 [TBL] [Abstract][Full Text] [Related]
17. NADPH Oxidase-Dependent Reactive Oxygen Species Stimulate β-Cell Regeneration Through Differentiation of Endocrine Progenitors in Murine Pancreas. Liang J; Wu SY; Zhang D; Wang L; Leung KK; Leung PS Antioxid Redox Signal; 2016 Mar; 24(8):419-33. PubMed ID: 26464216 [TBL] [Abstract][Full Text] [Related]
18. Activation of apoptosis signalling pathways by reactive oxygen species. Redza-Dutordoir M; Averill-Bates DA Biochim Biophys Acta; 2016 Dec; 1863(12):2977-2992. PubMed ID: 27646922 [TBL] [Abstract][Full Text] [Related]
19. NADPH oxidases in the differentiation of endothelial cells. Hahner F; Moll F; Schröder K Cardiovasc Res; 2020 Feb; 116(2):262-268. PubMed ID: 31393561 [TBL] [Abstract][Full Text] [Related]
20. Role of reactive oxygen species and NADPH-oxidase in the development of rat cerebellum. Coyoy A; Olguín-Albuerne M; Martínez-Briseño P; Morán J Neurochem Int; 2013 Jun; 62(7):998-1011. PubMed ID: 23535068 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]