These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 29258445)
1. A biological network-based regularized artificial neural network model for robust phenotype prediction from gene expression data. Kang T; Ding W; Zhang L; Ziemek D; Zarringhalam K BMC Bioinformatics; 2017 Dec; 18(1):565. PubMed ID: 29258445 [TBL] [Abstract][Full Text] [Related]
2. Robust clinical outcome prediction based on Bayesian analysis of transcriptional profiles and prior causal networks. Zarringhalam K; Enayetallah A; Reddy P; Ziemek D Bioinformatics; 2014 Jun; 30(12):i69-77. PubMed ID: 24932007 [TBL] [Abstract][Full Text] [Related]
3. Robust phenotype prediction from gene expression data using differential shrinkage of co-regulated genes. Zarringhalam K; Degras D; Brockel C; Ziemek D Sci Rep; 2018 Jan; 8(1):1237. PubMed ID: 29352257 [TBL] [Abstract][Full Text] [Related]
4. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
5. A novel artificial neural network method for biomedical prediction based on matrix pseudo-inversion. Cai B; Jiang X J Biomed Inform; 2014 Apr; 48():114-21. PubMed ID: 24361387 [TBL] [Abstract][Full Text] [Related]
6. Network-based drug sensitivity prediction. Ahmed KT; Park S; Jiang Q; Yeu Y; Hwang T; Zhang W BMC Med Genomics; 2020 Dec; 13(Suppl 11):193. PubMed ID: 33371891 [TBL] [Abstract][Full Text] [Related]
7. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction. Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253 [TBL] [Abstract][Full Text] [Related]
8. ReGeNNe: genetic pathway-based deep neural network using canonical correlation regularizer for disease prediction. Sharma D; Xu W Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37963055 [TBL] [Abstract][Full Text] [Related]
9. Explaining decisions of graph convolutional neural networks: patient-specific molecular subnetworks responsible for metastasis prediction in breast cancer. Chereda H; Bleckmann A; Menck K; Perera-Bel J; Stegmaier P; Auer F; Kramer F; Leha A; Beißbarth T Genome Med; 2021 Mar; 13(1):42. PubMed ID: 33706810 [TBL] [Abstract][Full Text] [Related]
10. Assessment of Various Machine Learning Models for Peach Maturity Prediction Using Non-Destructive Sensor Data. Ljubobratović D; Vuković M; Brkić Bakarić M; Jemrić T; Matetić M Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957349 [TBL] [Abstract][Full Text] [Related]
11. DeepGAMI: deep biologically guided auxiliary learning for multimodal integration and imputation to improve genotype-phenotype prediction. Chandrashekar PB; Alatkar S; Wang J; Hoffman GE; He C; Jin T; Khullar S; Bendl J; Fullard JF; Roussos P; Wang D Genome Med; 2023 Oct; 15(1):88. PubMed ID: 37904203 [TBL] [Abstract][Full Text] [Related]
12. Biological interpretation of deep neural network for phenotype prediction based on gene expression. Hanczar B; Zehraoui F; Issa T; Arles M BMC Bioinformatics; 2020 Nov; 21(1):501. PubMed ID: 33148191 [TBL] [Abstract][Full Text] [Related]
13. Can Machine-learning Techniques Be Used for 5-year Survival Prediction of Patients With Chondrosarcoma? Thio QCBS; Karhade AV; Ogink PT; Raskin KA; De Amorim Bernstein K; Lozano Calderon SA; Schwab JH Clin Orthop Relat Res; 2018 Oct; 476(10):2040-2048. PubMed ID: 30179954 [TBL] [Abstract][Full Text] [Related]
14. Network-based support vector machine for classification of microarray samples. Zhu Y; Shen X; Pan W BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S21. PubMed ID: 19208121 [TBL] [Abstract][Full Text] [Related]
15. Learning representation for multiple biological networks via a robust graph regularized integration approach. Zhang X; Wang W; Ren CX; Dai DQ Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34607360 [TBL] [Abstract][Full Text] [Related]
16. Xprediction: Explainable EGFR-TKIs response prediction based on drug sensitivity specific gene networks. Park H; Yamaguchi R; Imoto S; Miyano S PLoS One; 2022; 17(5):e0261630. PubMed ID: 35584089 [TBL] [Abstract][Full Text] [Related]
17. Architectures and accuracy of artificial neural network for disease classification from omics data. Yu H; Samuels DC; Zhao YY; Guo Y BMC Genomics; 2019 Mar; 20(1):167. PubMed ID: 30832569 [TBL] [Abstract][Full Text] [Related]
18. A comparative evaluation of the generalised predictive ability of eight machine learning algorithms across ten clinical metabolomics data sets for binary classification. Mendez KM; Reinke SN; Broadhurst DI Metabolomics; 2019 Nov; 15(12):150. PubMed ID: 31728648 [TBL] [Abstract][Full Text] [Related]
19. Application of neural networks with back-propagation to genome-enabled prediction of complex traits in Holstein-Friesian and German Fleckvieh cattle. Ehret A; Hochstuhl D; Gianola D; Thaller G Genet Sel Evol; 2015 Mar; 47(1):22. PubMed ID: 25886037 [TBL] [Abstract][Full Text] [Related]
20. A hybrid deep learning framework for gene regulatory network inference from single-cell transcriptomic data. Zhao M; He W; Tang J; Zou Q; Guo F Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35062026 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]