These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
377 related articles for article (PubMed ID: 29258595)
1. Improving phloroglucinol tolerance and production in Escherichia coli by GroESL overexpression. Zhang R; Cao Y; Liu W; Xian M; Liu H Microb Cell Fact; 2017 Dec; 16(1):227. PubMed ID: 29258595 [TBL] [Abstract][Full Text] [Related]
2. Improved phloroglucinol production by metabolically engineered Escherichia coli. Cao Y; Jiang X; Zhang R; Xian M Appl Microbiol Biotechnol; 2011 Sep; 91(6):1545-52. PubMed ID: 21643705 [TBL] [Abstract][Full Text] [Related]
3. GroESL overexpression imparts Escherichia coli tolerance to i-, n-, and 2-butanol, 1,2,4-butanetriol and ethanol with complex and unpredictable patterns. Zingaro KA; Terry Papoutsakis E Metab Eng; 2013 Jan; 15():196-205. PubMed ID: 22898718 [TBL] [Abstract][Full Text] [Related]
4. Production of phloroglucinol by Escherichia coli using a stationary-phase promoter. Cao Y; Xian M Biotechnol Lett; 2011 Sep; 33(9):1853-8. PubMed ID: 21544607 [TBL] [Abstract][Full Text] [Related]
5. Engineering cellular robustness of microbes by introducing the GroESL chaperonins from extremophilic bacteria. Luan G; Dong H; Zhang T; Lin Z; Zhang Y; Li Y; Cai Z J Biotechnol; 2014 May; 178():38-40. PubMed ID: 24637367 [TBL] [Abstract][Full Text] [Related]
6. Biosynthesis of 2,4-diacetylphloroglucinol from glucose using engineered Escherichia coli. Liu W; Zhang R; Xian M World J Microbiol Biotechnol; 2020 Jul; 36(9):130. PubMed ID: 32712706 [TBL] [Abstract][Full Text] [Related]
7. Increasing Agmatine Production in Xu D; Zhang L J Agric Food Chem; 2019 Jul; 67(28):7908-7915. PubMed ID: 31268314 [TBL] [Abstract][Full Text] [Related]
8. Genetic improvement of n-butanol tolerance in Escherichia coli by heterologous overexpression of groESL operon from Clostridium acetobutylicum. Abdelaal AS; Ageez AM; Abd El-Hadi AE; Abdallah NA 3 Biotech; 2015 Aug; 5(4):401-410. PubMed ID: 28324542 [TBL] [Abstract][Full Text] [Related]
9. Improving cellular robustness and butanol titers of Clostridium acetobutylicum ATCC824 by introducing heat shock proteins from an extremophilic bacterium. Liao Z; Zhang Y; Luo S; Suo Y; Zhang S; Wang J J Biotechnol; 2017 Jun; 252():1-10. PubMed ID: 28450259 [TBL] [Abstract][Full Text] [Related]
10. Toward a semisynthetic stress response system to engineer microbial solvent tolerance. Zingaro KA; Papoutsakis ET mBio; 2012; 3(5):. PubMed ID: 23033472 [TBL] [Abstract][Full Text] [Related]
11. Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol. Xu Y; Chu H; Gao C; Tao F; Zhou Z; Li K; Li L; Ma C; Xu P Metab Eng; 2014 May; 23():22-33. PubMed ID: 24525331 [TBL] [Abstract][Full Text] [Related]
12. Improved n-butanol tolerance in Escherichia coli by controlling membrane related functions. Bui le M; Lee JY; Geraldi A; Rahman Z; Lee JH; Kim SC J Biotechnol; 2015 Jun; 204():33-44. PubMed ID: 25858152 [TBL] [Abstract][Full Text] [Related]
13. Effect of DR1558, a Deinococcus radiodurans response regulator, on the production of GABA in the recombinant Escherichia coli under low pH conditions. Park SH; Sohn YJ; Park SJ; Choi JI Microb Cell Fact; 2020 Mar; 19(1):64. PubMed ID: 32156293 [TBL] [Abstract][Full Text] [Related]
14. Evolutionary engineering of Escherichia coli for improved anaerobic growth in minimal medium accelerated lactate production. Wang B; Zhang X; Yu X; Cui Z; Wang Z; Chen T; Zhao X Appl Microbiol Biotechnol; 2019 Mar; 103(5):2155-2170. PubMed ID: 30623201 [TBL] [Abstract][Full Text] [Related]
15. Metabolic engineering of Escherichia coli for the production of phenol from glucose. Kim B; Park H; Na D; Lee SY Biotechnol J; 2014 May; 9(5):621-9. PubMed ID: 24115680 [TBL] [Abstract][Full Text] [Related]
16. Expression regulation of multiple key genes to improve L-threonine in Escherichia coli. Zhao L; Lu Y; Yang J; Fang Y; Zhu L; Ding Z; Wang C; Ma W; Hu X; Wang X Microb Cell Fact; 2020 Feb; 19(1):46. PubMed ID: 32093713 [TBL] [Abstract][Full Text] [Related]
17. Construction of a novel anaerobic pathway in Escherichia coli for propionate production. Li J; Zhu X; Chen J; Zhao D; Zhang X; Bi C BMC Biotechnol; 2017 Apr; 17(1):38. PubMed ID: 28407739 [TBL] [Abstract][Full Text] [Related]
18. Integrated strain engineering and bioprocessing strategies for high-level bio-based production of 3-hydroxyvalerate in Escherichia coli. Miscevic D; Mao JY; Kefale T; Abedi D; Huang CC; Moo-Young M; Chou CP Appl Microbiol Biotechnol; 2020 Jun; 104(12):5259-5272. PubMed ID: 32291486 [TBL] [Abstract][Full Text] [Related]
19. Increasing the pyruvate pool by overexpressing phosphoenolpyruvate carboxykinase or triosephosphate isomerase enhances phloroglucinol production in Escherichia coli. Liu W; Zhang R; Wei M; Cao Y; Xian M Biotechnol Lett; 2020 Apr; 42(4):633-640. PubMed ID: 31965395 [TBL] [Abstract][Full Text] [Related]
20. Deletion of regulator-encoding genes fadR, fabR and iclR to increase L-threonine production in Escherichia coli. Yang J; Fang Y; Wang J; Wang C; Zhao L; Wang X Appl Microbiol Biotechnol; 2019 Jun; 103(11):4549-4564. PubMed ID: 31001742 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]