BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 29258595)

  • 21. Construction of a grpE-based plasmid addiction system in Escherichia coli and its application in phloroglucinol biosynthesis.
    Wang JM; Cao YJ; Men X; Zhang HB
    J Appl Microbiol; 2024 May; 135(5):. PubMed ID: 38724452
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthetic acid stress-tolerance modules improve growth robustness and lysine productivity of industrial Escherichia coli in fermentation at low pH.
    Yao X; Liu P; Chen B; Wang X; Tao F; Lin Z; Yang X
    Microb Cell Fact; 2022 Apr; 21(1):68. PubMed ID: 35459210
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolic Engineering of
    Wang X; Qiu C; Chen C; Gao C; Wei W; Song W; Wu J; Liu L; Chen X
    J Agric Food Chem; 2024 May; 72(19):11029-11040. PubMed ID: 38699920
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate L-pipecolic acid in Escherichia coli.
    Ying H; Tao S; Wang J; Ma W; Chen K; Wang X; Ouyang P
    Microb Cell Fact; 2017 Mar; 16(1):52. PubMed ID: 28347340
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Directed evolution of phloroglucinol synthase PhlD with increased stability for phloroglucinol production.
    Rao G; Lee JK; Zhao H
    Appl Microbiol Biotechnol; 2013 Jul; 97(13):5861-7. PubMed ID: 23358999
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering.
    Zha W; Rubin-Pitel SB; Shao Z; Zhao H
    Metab Eng; 2009 May; 11(3):192-8. PubMed ID: 19558964
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pathway construction and metabolic engineering for fermentative production of β-alanine in Escherichia coli.
    Zou X; Guo L; Huang L; Li M; Zhang S; Yang A; Zhang Y; Zhu L; Zhang H; Zhang J; Feng Z
    Appl Microbiol Biotechnol; 2020 Mar; 104(6):2545-2559. PubMed ID: 31989219
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient glutathione production in metabolically engineered Escherichia coli strains using constitutive promoters.
    Cui X; Wan J; Zhang X; Wu H; Li Z; Ye Q
    J Biotechnol; 2019 Jan; 289():39-45. PubMed ID: 30395880
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Cloning, expression and purification of the chaperonin GroESL in Escherichia coli].
    Zhou Y; Yin C; Zhang Q; Song D; Chen Y
    Wei Sheng Wu Xue Bao; 1997 Oct; 37(5):344-8. PubMed ID: 11189358
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Over expression of GroESL in Cupriavidus necator for heterotrophic and autotrophic isopropanol production.
    Marc J; Grousseau E; Lombard E; Sinskey AJ; Gorret N; Guillouet SE
    Metab Eng; 2017 Jul; 42():74-84. PubMed ID: 28591561
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fed-batch culture of Escherichia coli for L-valine production based on in silico flux response analysis.
    Park JH; Kim TY; Lee KH; Lee SY
    Biotechnol Bioeng; 2011 Apr; 108(4):934-46. PubMed ID: 21404266
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chromosome engineering of Escherichia coli for constitutive production of salvianic acid A.
    Zhou L; Ding Q; Jiang GZ; Liu ZN; Wang HY; Zhao GR
    Microb Cell Fact; 2017 May; 16(1):84. PubMed ID: 28511681
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell's transcriptional program.
    Tomas CA; Welker NE; Papoutsakis ET
    Appl Environ Microbiol; 2003 Aug; 69(8):4951-65. PubMed ID: 12902291
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Application of Dynamic Regulation to Increase L-Phenylalanine Production in
    Wu J; Liu Y; Zhao S; Sun J; Jin Z; Zhang D
    J Microbiol Biotechnol; 2019 Jun; 29(6):923-932. PubMed ID: 31154747
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improved production of D-pantothenic acid in Escherichia coli by integrated strain engineering and fermentation strategies.
    Zou S; Zhao K; Tang H; Zhang Z; Zhang B; Liu Z; Zheng Y
    J Biotechnol; 2021 Sep; 339():65-72. PubMed ID: 34352344
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Production of shikimic acid from Escherichia coli through chemically inducible chromosomal evolution and cofactor metabolic engineering.
    Cui YY; Ling C; Zhang YY; Huang J; Liu JZ
    Microb Cell Fact; 2014 Feb; 13():21. PubMed ID: 24512078
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Overexpression of the Lactobacillus plantarum peptidoglycan biosynthesis murA2 gene increases the tolerance of Escherichia coli to alcohols and enhances ethanol production.
    Yuan Y; Bi C; Nicolaou SA; Zingaro KA; Ralston M; Papoutsakis ET
    Appl Microbiol Biotechnol; 2014 Oct; 98(19):8399-411. PubMed ID: 25173692
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of an oxygen-inducible nar promoter system in metabolic engineering for production of biochemicals in Escherichia coli.
    Hwang HJ; Kim JW; Ju SY; Park JH; Lee PC
    Biotechnol Bioeng; 2017 Feb; 114(2):468-473. PubMed ID: 27543929
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Increasing L-homoserine production in Escherichia coli by engineering the central metabolic pathways.
    Liu M; Lou J; Gu J; Lyu XM; Wang FQ; Wei DZ
    J Biotechnol; 2020 May; 314-315():1-7. PubMed ID: 32251699
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.