These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 29259126)

  • 1. Active-site copper reduction promotes substrate binding of fungal lytic polysaccharide monooxygenase and reduces stability.
    Kracher D; Andlar M; Furtmüller PG; Ludwig R
    J Biol Chem; 2018 Feb; 293(5):1676-1687. PubMed ID: 29259126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural Dynamics of Lytic Polysaccharide Monooxygenase during Catalysis.
    Filandr F; Kavan D; Kracher D; Laurent CVFP; Ludwig R; Man P; Halada P
    Biomolecules; 2020 Feb; 10(2):. PubMed ID: 32033404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions of a fungal lytic polysaccharide monooxygenase with β-glucan substrates and cellobiose dehydrogenase.
    Courtade G; Wimmer R; Røhr ÅK; Preims M; Felice AK; Dimarogona M; Vaaje-Kolstad G; Sørlie M; Sandgren M; Ludwig R; Eijsink VG; Aachmann FL
    Proc Natl Acad Sci U S A; 2016 May; 113(21):5922-7. PubMed ID: 27152023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellulose surface degradation by a lytic polysaccharide monooxygenase and its effect on cellulase hydrolytic efficiency.
    Eibinger M; Ganner T; Bubner P; Rošker S; Kracher D; Haltrich D; Ludwig R; Plank H; Nidetzky B
    J Biol Chem; 2014 Dec; 289(52):35929-38. PubMed ID: 25361767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Lytic Polysaccharide Monooxygenase Active Site Segments on Activity and Affinity.
    Laurent CVFP; Sun P; Scheiblbrandner S; Csarman F; Cannazza P; Frommhagen M; van Berkel WJH; Oostenbrink C; Kabel MA; Ludwig R
    Int J Mol Sci; 2019 Dec; 20(24):. PubMed ID: 31835532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Lytic Polysaccharide Monooxygenase with Broad Xyloglucan Specificity from the Brown-Rot Fungus Gloeophyllum trabeum and Its Action on Cellulose-Xyloglucan Complexes.
    Kojima Y; Várnai A; Ishida T; Sunagawa N; Petrovic DM; Igarashi K; Jellison J; Goodell B; Alfredsen G; Westereng B; Eijsink VG; Yoshida M
    Appl Environ Microbiol; 2016 Nov; 82(22):6557-6572. PubMed ID: 27590806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the H
    Hedison TM; Breslmayr E; Shanmugam M; Karnpakdee K; Heyes DJ; Green AP; Ludwig R; Scrutton NS; Kracher D
    FEBS J; 2021 Jul; 288(13):4115-4128. PubMed ID: 33411405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying Oxidation of Cellulose-Associated Glucuronoxylan by Two Lytic Polysaccharide Monooxygenases from Neurospora crassa.
    Hegnar OA; Østby H; Petrović DM; Olsson L; Várnai A; Eijsink VGH
    Appl Environ Microbiol; 2021 Nov; 87(24):e0165221. PubMed ID: 34613755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Linker Region Promotes Activity and Binding Efficiency of Modular LPMO towards Polymeric Substrate.
    Srivastava A; Nagar P; Rathore S; Adlakha N
    Microbiol Spectr; 2022 Feb; 10(1):e0269721. PubMed ID: 35080440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and molecular dynamics studies of a C1-oxidizing lytic polysaccharide monooxygenase from Heterobasidion irregulare reveal amino acids important for substrate recognition.
    Liu B; Kognole AA; Wu M; Westereng B; Crowley MF; Kim S; Dimarogona M; Payne CM; Sandgren M
    FEBS J; 2018 Jun; 285(12):2225-2242. PubMed ID: 29660793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast and Specific Peroxygenase Reactions Catalyzed by Fungal Mono-Copper Enzymes.
    Rieder L; Stepnov AA; Sørlie M; Eijsink VGH
    Biochemistry; 2021 Nov; 60(47):3633-3643. PubMed ID: 34738811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of three seemingly similar lytic polysaccharide monooxygenases from
    Petrović DM; Várnai A; Dimarogona M; Mathiesen G; Sandgren M; Westereng B; Eijsink VGH
    J Biol Chem; 2019 Oct; 294(41):15068-15081. PubMed ID: 31431506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pH-Dependent Relationship between Catalytic Activity and Hydrogen Peroxide Production Shown via Characterization of a Lytic Polysaccharide Monooxygenase from
    Hegnar OA; Petrovic DM; Bissaro B; Alfredsen G; Várnai A; Eijsink VGH
    Appl Environ Microbiol; 2019 Mar; 85(5):. PubMed ID: 30578267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure and computational characterization of the lytic polysaccharide monooxygenase GH61D from the Basidiomycota fungus Phanerochaete chrysosporium.
    Wu M; Beckham GT; Larsson AM; Ishida T; Kim S; Payne CM; Himmel ME; Crowley MF; Horn SJ; Westereng B; Igarashi K; Samejima M; Ståhlberg J; Eijsink VG; Sandgren M
    J Biol Chem; 2013 May; 288(18):12828-39. PubMed ID: 23525113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a bacterial copper-dependent lytic polysaccharide monooxygenase with an unusual second coordination sphere.
    Munzone A; El Kerdi B; Fanuel M; Rogniaux H; Ropartz D; Réglier M; Royant A; Simaan AJ; Decroos C
    FEBS J; 2020 Aug; 287(15):3298-3314. PubMed ID: 31903721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and electronic determinants of lytic polysaccharide monooxygenase reactivity on polysaccharide substrates.
    Simmons TJ; Frandsen KEH; Ciano L; Tryfona T; Lenfant N; Poulsen JC; Wilson LFL; Tandrup T; Tovborg M; Schnorr K; Johansen KS; Henrissat B; Walton PH; Lo Leggio L; Dupree P
    Nat Commun; 2017 Oct; 8(1):1064. PubMed ID: 29057953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study of two chitin-active and two cellulose-active AA10-type lytic polysaccharide monooxygenases.
    Forsberg Z; Røhr AK; Mekasha S; Andersson KK; Eijsink VG; Vaaje-Kolstad G; Sørlie M
    Biochemistry; 2014 Mar; 53(10):1647-56. PubMed ID: 24559135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of the molecular determinants driving the substrate specificity of fungal lytic polysaccharide monooxygenases (LPMOs).
    Frandsen KEH; Haon M; Grisel S; Henrissat B; Lo Leggio L; Berrin JG
    J Biol Chem; 2021; 296():100086. PubMed ID: 33199373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Pyrroloquinoline-Quinone-Dependent Pyranose Dehydrogenase from Coprinopsis cinerea Drives Lytic Polysaccharide Monooxygenase Action.
    Várnai A; Umezawa K; Yoshida M; Eijsink VGH
    Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29602785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The carbohydrate-binding module and linker of a modular lytic polysaccharide monooxygenase promote localized cellulose oxidation.
    Courtade G; Forsberg Z; Heggset EB; Eijsink VGH; Aachmann FL
    J Biol Chem; 2018 Aug; 293(34):13006-13015. PubMed ID: 29967065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.