These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 29259135)
1. Eukaryotic copper-only superoxide dismutases (SODs): A new class of SOD enzymes and SOD-like protein domains. Robinett NG; Peterson RL; Culotta VC J Biol Chem; 2018 Mar; 293(13):4636-4643. PubMed ID: 29259135 [TBL] [Abstract][Full Text] [Related]
2. The Phylogeny and Active Site Design of Eukaryotic Copper-only Superoxide Dismutases. Peterson RL; Galaleldeen A; Villarreal J; Taylor AB; Cabelli DE; Hart PJ; Culotta VC J Biol Chem; 2016 Sep; 291(40):20911-20923. PubMed ID: 27535222 [TBL] [Abstract][Full Text] [Related]
3. Exploiting the vulnerable active site of a copper-only superoxide dismutase to disrupt fungal pathogenesis. Robinett NG; Culbertson EM; Peterson RL; Sanchez H; Andes DR; Nett JE; Culotta VC J Biol Chem; 2019 Feb; 294(8):2700-2713. PubMed ID: 30593499 [TBL] [Abstract][Full Text] [Related]
4. Characterization of two copper/zinc superoxide dismutases (Cu/Zn-SODs) from the desert beetle Microdera punctipennis and their activities in protecting E. coli cells against cold. Xikeranmu Z; Abdunasir M; Ma J; Tusong K; Liu X Cryobiology; 2019 Apr; 87():15-27. PubMed ID: 30890324 [TBL] [Abstract][Full Text] [Related]
5. Copper-only superoxide dismutase enzymes and iron starvation stress in Schatzman SS; Peterson RL; Teka M; He B; Cabelli DE; Cormack BP; Culotta VC J Biol Chem; 2020 Jan; 295(2):570-583. PubMed ID: 31806705 [TBL] [Abstract][Full Text] [Related]
6. Cu,Zn superoxide dismutase structure from a microbial pathogen establishes a class with a conserved dimer interface. Forest KT; Langford PR; Kroll JS; Getzoff ED J Mol Biol; 2000 Feb; 296(1):145-53. PubMed ID: 10656823 [TBL] [Abstract][Full Text] [Related]
7. Crystal Structure of a Cu,Zn Superoxide Dismutase From the Thermophilic Fungus Chaetomium thermophilum. Mohsin I; Zhang LQ; Li DC; Papageorgiou AC Protein Pept Lett; 2021; 28(9):1043-1053. PubMed ID: 33726638 [TBL] [Abstract][Full Text] [Related]
8. On the possible roles of N-terminal His-rich domains of Cu,Zn SODs of some Gram-negative bacteria. Arus D; Jancsó A; Szunyogh D; Matyuska F; Nagy NV; Hoffmann E; Körtvélyesi T; Gajda T J Inorg Biochem; 2012 Jan; 106(1):10-8. PubMed ID: 22105012 [TBL] [Abstract][Full Text] [Related]
9. Complete Amino Acid Sequence of a Copper/Zinc-Superoxide Dismutase from Ginger Rhizome. Nishiyama Y; Fukamizo T; Yoneda K; Araki T Protein J; 2017 Apr; 36(2):98-107. PubMed ID: 28185046 [TBL] [Abstract][Full Text] [Related]
10. Candida albicans SOD5 represents the prototype of an unprecedented class of Cu-only superoxide dismutases required for pathogen defense. Gleason JE; Galaleldeen A; Peterson RL; Taylor AB; Holloway SP; Waninger-Saroni J; Cormack BP; Cabelli DE; Hart PJ; Culotta VC Proc Natl Acad Sci U S A; 2014 Apr; 111(16):5866-71. PubMed ID: 24711423 [TBL] [Abstract][Full Text] [Related]
11. Identification and molecular characterization of two Cu/Zn-SODs and Mn-SOD in the marine ciliate Euplotes crassus: Modulation of enzyme activity and transcripts in response to copper and cadmium. Kim JS; Kim H; Yim B; Rhee JS; Won EJ; Lee YM Aquat Toxicol; 2018 Jun; 199():296-304. PubMed ID: 29605288 [TBL] [Abstract][Full Text] [Related]
12. Superoxide dismutases: active sites that save, but a protein that kills. Miller AF Curr Opin Chem Biol; 2004 Apr; 8(2):162-8. PubMed ID: 15062777 [TBL] [Abstract][Full Text] [Related]
14. Identification and analysis of icCu/Zn-SOD, Mn-SOD and ecCu/Zn-SOD in superoxide dismutase multigene family of Pseudosciaena crocea. Liu H; He J; Chi C; Gu Y Fish Shellfish Immunol; 2015 Apr; 43(2):491-501. PubMed ID: 25652289 [TBL] [Abstract][Full Text] [Related]
15. Rational De Novo Design of a Cu Metalloenzyme for Superoxide Dismutation. Mathieu E; Tolbert AE; Koebke KJ; Tard C; Iranzo O; Penner-Hahn JE; Policar C; Pecoraro V Chemistry; 2020 Jan; 26(1):249-258. PubMed ID: 31710732 [TBL] [Abstract][Full Text] [Related]
16. Comparative analysis of cyanobacterial superoxide dismutases to discriminate canonical forms. Priya B; Premanandh J; Dhanalakshmi RT; Seethalakshmi T; Uma L; Prabaharan D; Subramanian G BMC Genomics; 2007 Nov; 8():435. PubMed ID: 18042279 [TBL] [Abstract][Full Text] [Related]
17. Superoxide dismutases and their impact upon human health. Johnson F; Giulivi C Mol Aspects Med; 2005; 26(4-5):340-52. PubMed ID: 16099495 [TBL] [Abstract][Full Text] [Related]
18. Superoxide dismutases: role in redox signaling, vascular function, and diseases. Fukai T; Ushio-Fukai M Antioxid Redox Signal; 2011 Sep; 15(6):1583-606. PubMed ID: 21473702 [TBL] [Abstract][Full Text] [Related]
19. The megavirus chilensis Cu,Zn-superoxide dismutase: the first viral structure of a typical cellular copper chaperone-independent hyperstable dimeric enzyme. Lartigue A; Burlat B; Coutard B; Chaspoul F; Claverie JM; Abergel C J Virol; 2015 Jan; 89(1):824-32. PubMed ID: 25355875 [TBL] [Abstract][Full Text] [Related]
20. Genome-wide identification and characterization of superoxide dismutases in four oyster species reveals functional differentiation in response to biotic and abiotic stress. Liu Y; Bao Z; Lin Z; Xue Q BMC Genomics; 2022 May; 23(1):378. PubMed ID: 35585505 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]