BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 29259138)

  • 41. Phage specific for Vibrio cholerae O139 Bengal.
    Albert MJ; Bhuiyan NA; Rahman A; Ghosh AN; Hultenby K; Weintraub A; Nahar S; Kibriya AK; Ansaruzzaman M; Shimada T
    J Clin Microbiol; 1996 Jul; 34(7):1843-5. PubMed ID: 8784608
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Vibrio cholerae mannose-sensitive hemagglutinin is the receptor for a filamentous bacteriophage from V. cholerae O139.
    Jouravleva EA; McDonald GA; Marsh JW; Taylor RK; Boesman-Finkelstein M; Finkelstein RA
    Infect Immun; 1998 Jun; 66(6):2535-9. PubMed ID: 9596713
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Novel coordination of lipopolysaccharide modifications in Vibrio cholerae promotes CAMP resistance.
    Herrera CM; Henderson JC; Crofts AA; Trent MS
    Mol Microbiol; 2017 Nov; 106(4):582-596. PubMed ID: 28906060
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A comparative study of the properties of Vibrio cholerae O139, O1 and other non-O1 strains.
    Nandy RK; Sengupta TK; Mukhopadhyay S; Ghose AC
    J Med Microbiol; 1995 Apr; 42(4):251-7. PubMed ID: 7707332
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A novel filamentous phage, fs-2, of Vibrio cholerae O139.
    Ikema M; Honma Y
    Microbiology (Reading); 1998 Jul; 144 ( Pt 7)():1901-1906. PubMed ID: 9695923
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Diversity in the arrangement of the CTX prophages in classical strains of Vibrio cholerae O1.
    Basu A; Mukhopadhyay AK; Garg P; Chakraborty S; Ramamurthy T; Yamasaki S; Takeda Y; Nair GB
    FEMS Microbiol Lett; 2000 Jan; 182(1):35-40. PubMed ID: 10612727
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A highly specific phage defense system is a conserved feature of the Vibrio cholerae mobilome.
    O'Hara BJ; Barth ZK; McKitterick AC; Seed KD
    PLoS Genet; 2017 Jun; 13(6):e1006838. PubMed ID: 28594826
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of the major control region of Vibrio cholerae bacteriophage K139: immunity, exclusion, and integration.
    Nesper J; Blass J; Fountoulakis M; Reidl J
    J Bacteriol; 1999 May; 181(9):2902-13. PubMed ID: 10217785
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Novel Cholera Toxin Variant and ToxT Regulon in Environmental
    Neogi SB; Chowdhury N; Awasthi SP; Asakura M; Okuno K; Mahmud ZH; Islam MS; Hinenoya A; Nair GB; Yamasaki S
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30446560
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Vibrio cholerae infection, novel drug targets and phage therapy.
    Fazil MH; Singh DV
    Future Microbiol; 2011 Oct; 6(10):1199-208. PubMed ID: 22004038
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Genomic sequence and receptor for the Vibrio cholerae phage KSF-1phi: evolutionary divergence among filamentous vibriophages mediating lateral gene transfer.
    Faruque SM; Bin Naser I; Fujihara K; Diraphat P; Chowdhury N; Kamruzzaman M; Qadri F; Yamasaki S; Ghosh AN; Mekalanos JJ
    J Bacteriol; 2005 Jun; 187(12):4095-103. PubMed ID: 15937172
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A cocktail of three virulent bacteriophages prevents Vibrio cholerae infection in animal models.
    Yen M; Cairns LS; Camilli A
    Nat Commun; 2017 Feb; 8():14187. PubMed ID: 28146150
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bacteriophage CP-T1 of Vibrio cholerae. Identification of the cell surface receptor.
    Guidolin A; Manning PA
    Eur J Biochem; 1985 Nov; 153(1):89-94. PubMed ID: 4065151
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Identification of Vibrio mimicus bacteriophages].
    Gaevskaia NE; Kudriakova TA; Avdeeva EP; Makedonova LD; Kachkina GV
    Klin Lab Diagn; 2011 Mar; (3):50-2. PubMed ID: 21574461
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Quorum Regulated Resistance of Vibrio cholerae against Environmental Bacteriophages.
    Hoque MM; Naser IB; Bari SM; Zhu J; Mekalanos JJ; Faruque SM
    Sci Rep; 2016 Nov; 6():37956. PubMed ID: 27892495
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Genesis of variants of Vibrio cholerae O1 biotype El Tor: role of the CTXphi array and its position in the genome.
    Nandi S; Maiti D; Saha A; Bhadra RK
    Microbiology (Reading); 2003 Jan; 149(Pt 1):89-97. PubMed ID: 12576583
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Survival and proliferation of the lysogenic bacteriophage CTXΦ in Vibrio cholerae.
    Fan F; Kan B
    Virol Sin; 2015 Feb; 30(1):19-25. PubMed ID: 25613689
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular analysis of Vibrio cholerae O1, O139, non-O1, and non-O139 strains: clonal relationships between clinical and environmental isolates.
    Singh DV; Matte MH; Matte GR; Jiang S; Sabeena F; Shukla BN; Sanyal SC; Huq A; Colwell RR
    Appl Environ Microbiol; 2001 Feb; 67(2):910-21. PubMed ID: 11157262
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular comparison of toxigenic clinical & non-toxigenic environmental strains of Vibrio cholerae O1 Ogawa isolated during an outbreak of cholera in south India.
    Sinha S; Chowdhury P; Chowdhury NR; Kamruzzaman M; Faruque SM; Ramamurthy T; Bhattacharya SK; Yamasaki S; Takeda Y; Nair GB
    Indian J Med Res; 2001 Sep; 114():83-9. PubMed ID: 11873402
    [TBL] [Abstract][Full Text] [Related]  

  • 60. AlmG, responsible for polymyxin resistance in pandemic
    Henderson JC; Herrera CM; Trent MS
    J Biol Chem; 2017 Dec; 292(51):21205-21215. PubMed ID: 29101229
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.