These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 29259269)
1. Deep-learning-based ghost imaging. Lyu M; Wang W; Wang H; Wang H; Li G; Chen N; Situ G Sci Rep; 2017 Dec; 7(1):17865. PubMed ID: 29259269 [TBL] [Abstract][Full Text] [Related]
2. Ghost imaging based on asymmetric learning. Bian T; Dai Y; Hu J; Zheng Z; Gao L Appl Opt; 2020 Oct; 59(30):9548-9552. PubMed ID: 33104675 [TBL] [Abstract][Full Text] [Related]
3. A residual-based deep learning approach for ghost imaging. Bian T; Yi Y; Hu J; Zhang Y; Wang Y; Gao L Sci Rep; 2020 Jul; 10(1):12149. PubMed ID: 32699297 [TBL] [Abstract][Full Text] [Related]
4. Sub-Nyquist computational ghost imaging with deep learning. Wu H; Wang R; Zhao G; Xiao H; Wang D; Liang J; Tian X; Cheng L; Zhang X Opt Express; 2020 Feb; 28(3):3846-3853. PubMed ID: 32122046 [TBL] [Abstract][Full Text] [Related]
5. Ghost Imaging Based on Deep Learning. He Y; Wang G; Dong G; Zhu S; Chen H; Zhang A; Xu Z Sci Rep; 2018 Apr; 8(1):6469. PubMed ID: 29691452 [TBL] [Abstract][Full Text] [Related]
6. Color computational ghost imaging by deep learning based on simulation data training. Yu Z; Liu Y; Li J; Bai X; Yang Z; Ni Y; Zhou X Appl Opt; 2022 Feb; 61(4):1022-1029. PubMed ID: 35201070 [TBL] [Abstract][Full Text] [Related]
7. Single-pixel compressive optical image hiding based on conditional generative adversarial network. Li J; Li Y; Li J; Zhang Q; Li J Opt Express; 2020 Jul; 28(15):22992-23002. PubMed ID: 32752550 [TBL] [Abstract][Full Text] [Related]
8. Ghost edge detection based on HED network. Zhao S; Cui Y; He X; Wang L Front Optoelectron; 2022 Aug; 15(1):31. PubMed ID: 36637672 [TBL] [Abstract][Full Text] [Related]
9. High-speed computational ghost imaging based on an auto-encoder network under low sampling rate. Feng W; Sun X; Li X; Gao J; Zhao X; Zhao D Appl Opt; 2021 Jun; 60(16):4591-4598. PubMed ID: 34143013 [TBL] [Abstract][Full Text] [Related]
10. Self-contained deep learning-based boosting of 4D cone-beam CT reconstruction. Madesta F; Sentker T; Gauer T; Werner R Med Phys; 2020 Nov; 47(11):5619-5631. PubMed ID: 33063329 [TBL] [Abstract][Full Text] [Related]
11. Deblurring Ghost Imaging Reconstruction Based on Underwater Dataset Generated by Few-Shot Learning. Yang X; Yu Z; Jiang P; Xu L; Hu J; Wu L; Zou B; Zhang Y; Zhang J Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015921 [TBL] [Abstract][Full Text] [Related]
12. Fast high quality computational ghost imaging based on saliency variable sampling detection. Liu X; Hu J; Ju M; Wang Y; Han T; Huang J; Zhou C; Zhang Y; Song L Sci Rep; 2024 Apr; 14(1):7769. PubMed ID: 38565578 [TBL] [Abstract][Full Text] [Related]
13. k-Space deep learning for reference-free EPI ghost correction. Lee J; Han Y; Ryu JK; Park JY; Ye JC Magn Reson Med; 2019 Dec; 82(6):2299-2313. PubMed ID: 31321809 [TBL] [Abstract][Full Text] [Related]
14. A Novel Approach of Parallel Retina-Like Computational Ghost Imaging. Cao J; Zhou D; Zhang F; Cui H; Zhang Y; Hao Q Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33322285 [TBL] [Abstract][Full Text] [Related]
15. Bipolar compressive ghost imaging method to improve imaging quality. Yu Z; Liu Y; Bai X; Chen X; Wang Y; Li X; Sun M; Zhou X Opt Express; 2023 Jan; 31(2):3390-3400. PubMed ID: 36785333 [TBL] [Abstract][Full Text] [Related]
16. DeepGhost: real-time computational ghost imaging via deep learning. Rizvi S; Cao J; Zhang K; Hao Q Sci Rep; 2020 Jul; 10(1):11400. PubMed ID: 32647246 [TBL] [Abstract][Full Text] [Related]
17. Computational ghost imaging based on a conditional generation countermeasure network under a low sampling rate. Feng W; Sun X; Zhou S; Yi Y; Zhao D Appl Opt; 2022 Nov; 61(32):9693-9700. PubMed ID: 36606911 [TBL] [Abstract][Full Text] [Related]
18. Low sampling high quality image reconstruction and segmentation based on array network ghost imaging. Liu X; Han T; Zhou C; Huang J; Ju M; Xu B; Song L Opt Express; 2023 Mar; 31(6):9945-9960. PubMed ID: 37157558 [TBL] [Abstract][Full Text] [Related]
19. Deep compressed sensing MRI via a gradient-enhanced fusion model. Dai Y; Wang C; Wang H Med Phys; 2023 Mar; 50(3):1390-1405. PubMed ID: 36695158 [TBL] [Abstract][Full Text] [Related]
20. Deep-learning-based single-photon-counting compressive imaging via jointly trained subpixel convolution sampling. Li WC; Yan QR; Guan YQ; Yang ST; Peng C; Fang ZY Appl Opt; 2020 Aug; 59(23):6828-6837. PubMed ID: 32788773 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]