These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 29259352)

  • 1. Mechanism of Restoration of Forelimb Motor Function after Cervical Spinal Cord Hemisection in Rats: Electrophysiological Verification.
    Takeuchi T; Takahashi M; Satomi K; Ohne H; Hasegawa A; Sato S; Ichimura S
    Behav Neurol; 2017; 2017():7514681. PubMed ID: 29259352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of Forelimb Motor Function Restoration after Cervical Spinal Cord Hemisection in Rats: A Comparison of Juveniles and Adults.
    Hasegawa A; Takahashi M; Satomi K; Ohne H; Takeuchi T; Sato S; Ichimura S
    Behav Neurol; 2016; 2016():1035473. PubMed ID: 27065569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Riluzole promotes motor and respiratory recovery associated with enhanced neuronal survival and function following high cervical spinal hemisection.
    Satkunendrarajah K; Nassiri F; Karadimas SK; Lip A; Yao G; Fehlings MG
    Exp Neurol; 2016 Feb; 276():59-71. PubMed ID: 26394202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motor deficits and recovery in rats with unilateral spinal cord hemisection mimic the Brown-Sequard syndrome.
    Filli L; Zörner B; Weinmann O; Schwab ME
    Brain; 2011 Aug; 134(Pt 8):2261-73. PubMed ID: 21752788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative assessment of forelimb motor function after cervical spinal cord injury in rats: relationship to the corticospinal tract.
    Anderson KD; Gunawan A; Steward O
    Exp Neurol; 2005 Jul; 194(1):161-74. PubMed ID: 15899253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immediate plasticity in the motor pathways after spinal cord hemisection: implications for transcranial magnetic motor-evoked potentials.
    Fujiki M; Kobayashi H; Inoue R; Ishii K
    Exp Neurol; 2004 Jun; 187(2):468-77. PubMed ID: 15144873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery of forepaw gripping ability and reorganization of cortical motor control following cervical spinal cord injuries in mice.
    Blanco JE; Anderson KD; Steward O
    Exp Neurol; 2007 Feb; 203(2):333-48. PubMed ID: 17049345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing forelimb function after unilateral cervical spinal cord injury: novel forelimb tasks predict lesion severity and recovery.
    Khaing ZZ; Geissler SA; Jiang S; Milman BD; Aguilar SV; Schmidt CE; Schallert T
    J Neurotrauma; 2012 Feb; 29(3):488-98. PubMed ID: 22022897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic changes in phrenic motor output following high cervical hemisection in the decerebrate rat.
    Ghali MG; Marchenko V
    Exp Neurol; 2015 Sep; 271():379-89. PubMed ID: 26056711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spinal interneurons and forelimb plasticity after incomplete cervical spinal cord injury in adult rats.
    Gonzalez-Rothi EJ; Rombola AM; Rousseau CA; Mercier LM; Fitzpatrick GM; Reier PJ; Fuller DD; Lane MA
    J Neurotrauma; 2015 Jun; 32(12):893-907. PubMed ID: 25625912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delayed intervention with transplants and neurotrophic factors supports recovery of forelimb function after cervical spinal cord injury in adult rats.
    Lynskey JV; Sandhu FA; Dai HN; McAtee M; Slotkin JR; MacArthur L; Bregman BS
    J Neurotrauma; 2006 May; 23(5):617-34. PubMed ID: 16689666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic motor compensations with permanent, focal loss of forelimb force after cervical spinal cord injury.
    López-Dolado E; Lucas-Osma AM; Collazos-Castro JE
    J Neurotrauma; 2013 Feb; 30(3):191-210. PubMed ID: 23249275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One day of motor training with amphetamine impairs motor recovery following spinal cord injury.
    Wong JK; Steward O
    Exp Neurol; 2012 Feb; 233(2):693-707. PubMed ID: 22078754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Independent replication of motor cortex and cervical spinal cord electrical stimulation to promote forelimb motor function after spinal cord injury in rats.
    Yang Q; Ramamurthy A; Lall S; Santos J; Ratnadurai-Giridharan S; Lopane M; Zareen N; Alexander H; Ryan D; Martin JH; Carmel JB
    Exp Neurol; 2019 Oct; 320():112962. PubMed ID: 31125548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential tactile and motor recovery and cortical map alteration after C4-C5 spinal hemisection.
    Martinez M; Delcour M; Russier M; Zennou-Azogui Y; Xerri C; Coq JO; Brezun JM
    Exp Neurol; 2010 Jan; 221(1):186-97. PubMed ID: 19896483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spinal pathways involved in the control of forelimb motor function in rats.
    Anderson KD; Gunawan A; Steward O
    Exp Neurol; 2007 Aug; 206(2):318-31. PubMed ID: 17603042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Behavioral and histological characterization of unilateral cervical spinal cord contusion injury in rats.
    Gensel JC; Tovar CA; Hamers FP; Deibert RJ; Beattie MS; Bresnahan JC
    J Neurotrauma; 2006 Jan; 23(1):36-54. PubMed ID: 16430371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensorimotor training promotes functional recovery and somatosensory cortical map reactivation following cervical spinal cord injury.
    Martinez M; Brezun JM; Zennou-Azogui Y; Baril N; Xerri C
    Eur J Neurosci; 2009 Dec; 30(12):2356-67. PubMed ID: 20092578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of forelimb motor function restoration in rats with cervical spinal cord hemisection-neuroanatomical validation.
    Ohne H; Takahashi M; Satomi K; Hasegawa A; Takeuchi T; Sato S; Ichimura S
    IBRO Rep; 2019 Dec; 7():10-25. PubMed ID: 31431931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of quadrupedal step training to re-engage spinal interneuronal networks and improve locomotor function after spinal cord injury.
    Shah PK; Garcia-Alias G; Choe J; Gad P; Gerasimenko Y; Tillakaratne N; Zhong H; Roy RR; Edgerton VR
    Brain; 2013 Nov; 136(Pt 11):3362-77. PubMed ID: 24103912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.