These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

411 related articles for article (PubMed ID: 29259521)

  • 21. In Vivo Genome Editing Partially Restores Alpha1-Antitrypsin in a Murine Model of AAT Deficiency.
    Song CQ; Wang D; Jiang T; O'Connor K; Tang Q; Cai L; Li X; Weng Z; Yin H; Gao G; Mueller C; Flotte TR; Xue W
    Hum Gene Ther; 2018 Aug; 29(8):853-860. PubMed ID: 29597895
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Liver-directed gene therapy for inherited metabolic diseases.
    Baruteau J; Brunetti-Pierri N; Gissen P
    J Inherit Metab Dis; 2024 Jan; 47(1):9-21. PubMed ID: 38171926
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A mutation-independent CRISPR-Cas9-mediated gene targeting approach to treat a murine model of ornithine transcarbamylase deficiency.
    Wang L; Yang Y; Breton C; Bell P; Li M; Zhang J; Che Y; Saveliev A; He Z; White J; Latshaw C; Xu C; McMenamin D; Yu H; Morizono H; Batshaw ML; Wilson JM
    Sci Adv; 2020 Feb; 6(7):eaax5701. PubMed ID: 32095520
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combining Engineered Nucleases with Adeno-associated Viral Vectors for Therapeutic Gene Editing.
    Epstein BE; Schaffer DV
    Adv Exp Med Biol; 2017; 1016():29-42. PubMed ID: 29130152
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Therapeutic editing of hepatocyte genome in vivo.
    Ruiz de Galarreta M; Lujambio A
    J Hepatol; 2017 Oct; 67(4):818-828. PubMed ID: 28527665
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient expansion and CRISPR-Cas9-mediated gene correction of patient-derived hepatocytes for treatment of inherited liver diseases.
    Zhang K; Wan P; Wang L; Wang Z; Tan F; Li J; Ma X; Cen J; Yuan X; Liu Y; Sun Z; Cheng X; Liu Y; Liu X; Hu J; Zhong G; Li D; Xia Q; Hui L
    Cell Stem Cell; 2024 Aug; 31(8):1187-1202.e8. PubMed ID: 38772378
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adeno-associated virus vector-based gene therapy for monogenetic metabolic diseases of the liver.
    Junge N; Mingozzi F; Ott M; Baumann U
    J Pediatr Gastroenterol Nutr; 2015 Apr; 60(4):433-40. PubMed ID: 25594875
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gene editing technology as an approach to the treatment of liver diseases.
    Aravalli RN; Steer CJ
    Expert Opin Biol Ther; 2016; 16(5):595-608. PubMed ID: 26914853
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gene therapy for monogenic liver diseases: clinical successes, current challenges and future prospects.
    Baruteau J; Waddington SN; Alexander IE; Gissen P
    J Inherit Metab Dis; 2017 Jul; 40(4):497-517. PubMed ID: 28567541
    [TBL] [Abstract][Full Text] [Related]  

  • 30. AAV-mediated gene therapy for liver diseases: the prime candidate for clinical application?
    van der Laan LJ; Wang Y; Tilanus HW; Janssen HL; Pan Q
    Expert Opin Biol Ther; 2011 Mar; 11(3):315-27. PubMed ID: 21204741
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Therapeutic applications of CRISPR RNA-guided genome editing.
    Koo T; Kim JS
    Brief Funct Genomics; 2017 Jan; 16(1):38-45. PubMed ID: 27562951
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype.
    Yin H; Xue W; Chen S; Bogorad RL; Benedetti E; Grompe M; Koteliansky V; Sharp PA; Jacks T; Anderson DG
    Nat Biotechnol; 2014 Jun; 32(6):551-3. PubMed ID: 24681508
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome Editing: The Recent History and Perspective in Cardiovascular Diseases.
    Musunuru K
    J Am Coll Cardiol; 2017 Dec; 70(22):2808-2821. PubMed ID: 29191331
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CRISPR-Cas9: a new and promising player in gene therapy.
    Xiao-Jie L; Hui-Ying X; Zun-Ping K; Jin-Lian C; Li-Juan J
    J Med Genet; 2015 May; 52(5):289-96. PubMed ID: 25713109
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Amelioration of Alpha-1 Antitrypsin Deficiency Diseases with Genome Editing in Transgenic Mice.
    Shen S; Sanchez ME; Blomenkamp K; Corcoran EM; Marco E; Yudkoff CJ; Jiang H; Teckman JH; Bumcrot D; Albright CF
    Hum Gene Ther; 2018 Aug; 29(8):861-873. PubMed ID: 29641323
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genome Editing and Its Applications in Model Organisms.
    Ma D; Liu F
    Genomics Proteomics Bioinformatics; 2015 Dec; 13(6):336-44. PubMed ID: 26762955
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeted Gene Insertion: The Cutting Edge of CRISPR Drug Development with Hemophilia as a Highlight.
    Zhang Z; Zhang S; Wong HT; Li D; Feng B
    BioDrugs; 2024 May; 38(3):369-385. PubMed ID: 38489061
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gene Editing With CRISPR/Cas9 RNA-Directed Nuclease.
    Doetschman T; Georgieva T
    Circ Res; 2017 Mar; 120(5):876-894. PubMed ID: 28254804
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of CRISPR-Cas system in gene therapy: Pre-clinical progress in animal model.
    Guan L; Han Y; Zhu S; Lin J
    DNA Repair (Amst); 2016 Oct; 46():1-8. PubMed ID: 27519625
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gene editing for skin diseases: designer nucleases as tools for gene therapy of skin fragility disorders.
    March OP; Reichelt J; Koller U
    Exp Physiol; 2018 Apr; 103(4):449-455. PubMed ID: 28271571
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.