These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 29260198)

  • 21. Biological length scale topography enhances cell-substratum adhesion of human corneal epithelial cells.
    Karuri NW; Liliensiek S; Teixeira AI; Abrams G; Campbell S; Nealey PF; Murphy CJ
    J Cell Sci; 2004 Jul; 117(Pt 15):3153-64. PubMed ID: 15226393
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cultured corneal epithelia for ocular surface disease.
    Schwab IR
    Trans Am Ophthalmol Soc; 1999; 97():891-986. PubMed ID: 10703147
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative analysis of the effects of extracellular matrix proteins on membrane dynamics associated with corneal epithelial cell motility.
    Kimura K; Kawano S; Mori T; Inoue J; Hadachi H; Saito T; Nishida T
    Invest Ophthalmol Vis Sci; 2010 Sep; 51(9):4492-9. PubMed ID: 20357207
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancing annulus fibrosus tissue formation in porous silk scaffolds.
    Chang G; Kim HJ; Vunjak-Novakovic G; Kaplan DL; Kandel R
    J Biomed Mater Res A; 2010 Jan; 92(1):43-51. PubMed ID: 19165797
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural organization of the cytoskeleton in SV40 human corneal epithelial cells cultured on nano- and microscale grooves.
    Karuri NW; Nealey PF; Murphy CJ; Albrecht RM
    Scanning; 2008; 30(5):405-13. PubMed ID: 18626907
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface-modified electrospun poly(epsilon-caprolactone) scaffold with improved optical transparency and bioactivity for damaged ocular surface reconstruction.
    Sharma S; Gupta D; Mohanty S; Jassal M; Agrawal AK; Tandon R
    Invest Ophthalmol Vis Sci; 2014 Feb; 55(2):899-907. PubMed ID: 24425860
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The ability of corneal epithelial cells to recognize high aspect ratio nanostructures.
    Tocce EJ; Smirnov VK; Kibalov DS; Liliensiek SJ; Murphy CJ; Nealey PF
    Biomaterials; 2010 May; 31(14):4064-72. PubMed ID: 20153044
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hexagonal micron scale pillars influence epithelial cell adhesion, morphology, proliferation, migration, and cytoskeletal arrangement.
    Nematollahi M; Hamilton DW; Jaeger NJ; Brunette DM
    J Biomed Mater Res A; 2009 Oct; 91(1):149-57. PubMed ID: 18773428
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of extracellular matrix proteins and substratum topography on corneal epithelial cell alignment and migration.
    Raghunathan V; McKee C; Cheung W; Naik R; Nealey PF; Russell P; Murphy CJ
    Tissue Eng Part A; 2013 Aug; 19(15-16):1713-22. PubMed ID: 23488816
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The influence of biomimetic topographical features and the extracellular matrix peptide RGD on human corneal epithelial contact guidance.
    Tocce EJ; Liliensiek SJ; Broderick AH; Jiang Y; Murphy KC; Murphy CJ; Lynn DM; Nealey PF
    Acta Biomater; 2013 Feb; 9(2):5040-51. PubMed ID: 23069317
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The scale of substratum topographic features modulates proliferation of corneal epithelial cells and corneal fibroblasts.
    Liliensiek SJ; Campbell S; Nealey PF; Murphy CJ
    J Biomed Mater Res A; 2006 Oct; 79(1):185-92. PubMed ID: 16817223
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Human corneal epithelial cell response to substrate stiffness.
    Molladavoodi S; Kwon HJ; Medley J; Gorbet M
    Acta Biomater; 2015 Jan; 11():324-32. PubMed ID: 25305512
    [TBL] [Abstract][Full Text] [Related]  

  • 33. RNA-seq analysis of impact of PNN on gene expression and alternative splicing in corneal epithelial cells.
    Akin D; Newman JR; McIntyre LM; Sugrue SP
    Mol Vis; 2016; 22():40-60. PubMed ID: 26900324
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioengineered neo-corneal endothelium using collagen type-I coated silk fibroin film.
    Kim EY; Tripathy N; Cho SA; Joo CK; Lee D; Khang G
    Colloids Surf B Biointerfaces; 2015 Dec; 136():394-401. PubMed ID: 26433646
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Impact of regenerated silk protein membrane on the cytokine expression of transfected human corneal epithelium cells].
    Zhang XF; Liu TL; Sheng WH; Yang JC; Miao JC
    Zhonghua Yan Ke Za Zhi; 2009 Nov; 45(11):992-8. PubMed ID: 20137417
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Breast epithelial cell infiltration in enhanced electrospun silk scaffolds.
    Maghdouri-White Y; Elmore LW; Bowlin GL; Dréau D
    J Tissue Eng Regen Med; 2016 Feb; 10(2):E121-31. PubMed ID: 23798502
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of β-Pix in corneal epithelial cell migration on fibronectin.
    Kimura K; Teranishi S; Orita T; Zhou H; Nishida T
    Invest Ophthalmol Vis Sci; 2011 May; 52(6):3181-6. PubMed ID: 21228382
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biochemically and topographically engineered poly(ethylene glycol) diacrylate hydrogels with biomimetic characteristics as substrates for human corneal epithelial cells.
    Yañez-Soto B; Liliensiek SJ; Murphy CJ; Nealey PF
    J Biomed Mater Res A; 2013 Apr; 101(4):1184-94. PubMed ID: 23255502
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional reconstruction of rabbit corneal epithelium by human limbal cells cultured on amniotic membrane.
    Du Y; Chen J; Funderburgh JL; Zhu X; Li L
    Mol Vis; 2003 Dec; 9():635-43. PubMed ID: 14685149
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Planting and biological character of rabbit corneal epithelial cells on amniotic membrane].
    Xu M; Zhao M; Xia L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Feb; 25(1):168-71. PubMed ID: 18435283
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.