BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 29261011)

  • 21. GABA (γ-Aminobutyric Acid) Uptake Via the GABA Permease GabP Represses Virulence Gene Expression in Pseudomonas syringae pv. tomato DC3000.
    McCraw SL; Park DH; Jones R; Bentley MA; Rico A; Ratcliffe RG; Kruger NJ; Collmer A; Preston GM
    Mol Plant Microbe Interact; 2016 Dec; 29(12):938-949. PubMed ID: 28001093
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative transcriptomic analysis of global gene expression mediated by (p) ppGpp reveals common regulatory networks in Pseudomonas syringae.
    Liu J; Yu M; Chatnaparat T; Lee JH; Tian Y; Hu B; Zhao Y
    BMC Genomics; 2020 Apr; 21(1):296. PubMed ID: 32272893
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pseudomonas syringae type III secretion system effectors: repertoires in search of functions.
    Cunnac S; Lindeberg M; Collmer A
    Curr Opin Microbiol; 2009 Feb; 12(1):53-60. PubMed ID: 19168384
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemoperception of Specific Amino Acids Controls Phytopathogenicity in Pseudomonas syringae pv. tomato.
    Cerna-Vargas JP; Santamaría-Hernando S; Matilla MA; Rodríguez-Herva JJ; Daddaoua A; Rodríguez-Palenzuela P; Krell T; López-Solanilla E
    mBio; 2019 Oct; 10(5):. PubMed ID: 31575767
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Salicylic acid, yersiniabactin, and pyoverdin production by the model phytopathogen Pseudomonas syringae pv. tomato DC3000: synthesis, regulation, and impact on tomato and Arabidopsis host plants.
    Jones AM; Lindow SE; Wildermuth MC
    J Bacteriol; 2007 Oct; 189(19):6773-86. PubMed ID: 17660289
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Pseudomonas syringae pv. tomato DC3000 type III effector HopF2 has a putative myristoylation site required for its avirulence and virulence functions.
    Robert-Seilaniantz A; Shan L; Zhou JM; Tang X
    Mol Plant Microbe Interact; 2006 Feb; 19(2):130-8. PubMed ID: 16529375
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of overexpressing rsmA from Pseudomonas aeruginosa on virulence of select phytotoxin-producing strains of P. syringae.
    Kong HS; Roberts DP; Patterson CD; Kuehne SA; Heeb S; Lakshman DK; Lydon J
    Phytopathology; 2012 Jun; 102(6):575-87. PubMed ID: 22568815
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of a twin-arginine translocation system in Pseudomonas syringae pv. tomato DC3000 and its contribution to pathogenicity and fitness.
    Bronstein PA; Marrichi M; Cartinhour S; Schneider DJ; DeLisa MP
    J Bacteriol; 2005 Dec; 187(24):8450-61. PubMed ID: 16321949
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Light regulates motility, attachment and virulence in the plant pathogen Pseudomonas syringae pv tomato DC3000.
    Río-Álvarez I; Rodríguez-Herva JJ; Martínez PM; González-Melendi P; García-Casado G; Rodríguez-Palenzuela P; López-Solanilla E
    Environ Microbiol; 2014 Jul; 16(7):2072-85. PubMed ID: 24033935
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of the role of the type III effector inventory of Pseudomonas syringae pv. phaseolicola 1448a in interaction with the plant.
    Zumaquero A; Macho AP; Rufián JS; Beuzón CR
    J Bacteriol; 2010 Sep; 192(17):4474-88. PubMed ID: 20601478
    [TBL] [Abstract][Full Text] [Related]  

  • 31. AmrZ regulates cellulose production in Pseudomonas syringae pv. tomato DC3000.
    Prada-Ramírez HA; Pérez-Mendoza D; Felipe A; Martínez-Granero F; Rivilla R; Sanjuán J; Gallegos MT
    Mol Microbiol; 2016 Mar; 99(5):960-77. PubMed ID: 26564578
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Virulence systems of Pseudomonas syringae pv. tomato promote bacterial speck disease in tomato by targeting the jasmonate signaling pathway.
    Zhao Y; Thilmony R; Bender CL; Schaller A; He SY; Howe GA
    Plant J; 2003 Nov; 36(4):485-99. PubMed ID: 14617079
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Knock-out or knock-in? Converting a SacB-based gene disruption system for site-specific chromosomal integration in Pseudomonas syringae pv. tomato DC3000.
    Lee YC; Chien CF; Lin NC
    J Microbiol Methods; 2018 Feb; 145():50-58. PubMed ID: 29305877
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Disruption of the carA gene in Pseudomonas syringae results in reduced fitness and alters motility.
    Butcher BG; Chakravarthy S; D'Amico K; Stoos KB; Filiatrault MJ
    BMC Microbiol; 2016 Aug; 16(1):194. PubMed ID: 27558694
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification and characterization of a well-defined series of coronatine biosynthetic mutants of Pseudomonas syringae pv. tomato DC3000.
    Brooks DM; Hernández-Guzmán G; Kloek AP; Alarcón-Chaidez F; Sreedharan A; Rangaswamy V; Peñaloza-Vázquez A; Bender CL; Kunkel BN
    Mol Plant Microbe Interact; 2004 Feb; 17(2):162-74. PubMed ID: 14964530
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An avrPto/avrPtoB mutant of Pseudomonas syringae pv. tomato DC3000 does not elicit Pto-mediated resistance and is less virulent on tomato.
    Lin NC; Martin GB
    Mol Plant Microbe Interact; 2005 Jan; 18(1):43-51. PubMed ID: 15672817
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Re-evaluation of a Tn5::gacA mutant of Pseudomonas syringae pv. tomato DC3000 uncovers roles for uvrC and anmK in promoting virulence.
    O'Malley MR; Weisberg AJ; Chang JH; Anderson JC
    PLoS One; 2019; 14(10):e0223637. PubMed ID: 31600319
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiple approaches to a complete inventory of Pseudomonas syringae pv. tomato DC3000 type III secretion system effector proteins.
    Schechter LM; Vencato M; Jordan KL; Schneider SE; Schneider DJ; Collmer A
    Mol Plant Microbe Interact; 2006 Nov; 19(11):1180-92. PubMed ID: 17073301
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The phytotoxin coronatine contributes to pathogen fitness and is required for suppression of salicylic acid accumulation in tomato inoculated with Pseudomonas syringae pv. tomato DC3000.
    Uppalapati SR; Ishiga Y; Wangdi T; Kunkel BN; Anand A; Mysore KS; Bender CL
    Mol Plant Microbe Interact; 2007 Aug; 20(8):955-65. PubMed ID: 17722699
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Tat pathway of the plant pathogen Pseudomonas syringae is required for optimal virulence.
    Caldelari I; Mann S; Crooks C; Palmer T
    Mol Plant Microbe Interact; 2006 Feb; 19(2):200-12. PubMed ID: 16529382
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.