BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 29261011)

  • 61. Quorum-dependent expression of rsmX and rsmY, small non-coding RNAs, in Pseudomonas syringae.
    Nakatsu Y; Matsui H; Yamamoto M; Noutoshi Y; Toyoda K; Ichinose Y
    Microbiol Res; 2019; 223-225():72-78. PubMed ID: 31178054
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Construction of Pseudomonas syringae pv. tomato DC3000 mutant and polymutant strains.
    Kvitko BH; Collmer A
    Methods Mol Biol; 2011; 712():109-28. PubMed ID: 21359804
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Identification of Indole-3-Acetic Acid-Regulated Genes in
    Djami-Tchatchou AT; Li ZA; Stodghill P; Filiatrault MJ; Kunkel BN
    J Bacteriol; 2022 Jan; 204(1):e0038021. PubMed ID: 34662236
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The Pseudomonas syringae avrRpt2 gene contributes to virulence on tomato.
    Lim MT; Kunkel BN
    Mol Plant Microbe Interact; 2005 Jul; 18(7):626-33. PubMed ID: 16042008
    [TBL] [Abstract][Full Text] [Related]  

  • 65. GacA, the response regulator of a two-component system, acts as a master regulator in Pseudomonas syringae pv. tomato DC3000 by controlling regulatory RNA, transcriptional activators, and alternate sigma factors.
    Chatterjee A; Cui Y; Yang H; Collmer A; Alfano JR; Chatterjee AK
    Mol Plant Microbe Interact; 2003 Dec; 16(12):1106-17. PubMed ID: 14651344
    [TBL] [Abstract][Full Text] [Related]  

  • 66. An extracytoplasmic function sigma factor-mediated cell surface signaling system in Pseudomonas syringae pv. tomato DC3000 regulates gene expression in response to heterologous siderophores.
    Markel E; Maciak C; Butcher BG; Myers CR; Stodghill P; Bao Z; Cartinhour S; Swingle B
    J Bacteriol; 2011 Oct; 193(20):5775-83. PubMed ID: 21840980
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Pseudomonas syringae pv. tomato DC3000 type III effector HopAA1-1 functions redundantly with chlorosis-promoting factor PSPTO4723 to produce bacterial speck lesions in host tomato.
    Munkvold KR; Russell AB; Kvitko BH; Collmer A
    Mol Plant Microbe Interact; 2009 Nov; 22(11):1341-55. PubMed ID: 19810804
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Two glyceraldehyde-3-phosphate dehydrogenases with distinctive roles in Pseudomonas syringae pv. tomato DC3000.
    Casas-Román A; Lorite MJ; Sanjuán J; Gallegos MT
    Microbiol Res; 2024 Jan; 278():127530. PubMed ID: 37890268
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A pseudomonas syringae pv. tomato DC3000 Hrp (Type III secretion) deletion mutant expressing the Hrp system of bean pathogen P. syringae pv. syringae 61 retains normal host specificity for tomato.
    Fouts DE; Badel JL; Ramos AR; Rapp RA; Collmer A
    Mol Plant Microbe Interact; 2003 Jan; 16(1):43-52. PubMed ID: 12580281
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Pseudomonas syringae pv. tomato type III effectors AvrPto and AvrPtoB promote ethylene-dependent cell death in tomato.
    Cohn JR; Martin GB
    Plant J; 2005 Oct; 44(1):139-54. PubMed ID: 16167902
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The hrpK operon of Pseudomonas syringae pv. tomato DC3000 encodes two proteins secreted by the type III (Hrp) protein secretion system: HopB1 and HrpK, a putative type III translocator.
    Petnicki-Ocwieja T; van Dijk K; Alfano JR
    J Bacteriol; 2005 Jan; 187(2):649-63. PubMed ID: 15629936
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Pathogenicity of Pseudomonas syringae pv. tomato on tomato seedlings: phenotypic and gene expression analyses of the virulence function of coronatine.
    Uppalapati SR; Ishiga Y; Wangdi T; Urbanczyk-Wochniak E; Ishiga T; Mysore KS; Bender CL
    Mol Plant Microbe Interact; 2008 Apr; 21(4):383-95. PubMed ID: 18321184
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Pseudomonas syringae pv. tomato exploits light signals to optimize virulence and colonization of leaves.
    Santamaría-Hernando S; Rodríguez-Herva JJ; Martínez-García PM; Río-Álvarez I; González-Melendi P; Zamorano J; Tapia C; Rodríguez-Palenzuela P; López-Solanilla E
    Environ Microbiol; 2018 Dec; 20(12):4261-4280. PubMed ID: 30058114
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A Pseudomonas syringae pv. tomato DC3000 mutant lacking the type III effector HopQ1-1 is able to cause disease in the model plant Nicotiana benthamiana.
    Wei CF; Kvitko BH; Shimizu R; Crabill E; Alfano JR; Lin NC; Martin GB; Huang HC; Collmer A
    Plant J; 2007 Jul; 51(1):32-46. PubMed ID: 17559511
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Pseudomonas syringae pv. tomato DC3000 HopPtoM (CEL ORF3) is important for lesion formation but not growth in tomato and is secreted and translocated by the Hrp type III secretion system in a chaperone-dependent manner.
    Badel JL; Nomura K; Bandyopadhyay S; Shimizu R; Collmer A; He SY
    Mol Microbiol; 2003 Sep; 49(5):1239-51. PubMed ID: 12940984
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The Erwinia amylovora avrRpt2EA gene contributes to virulence on pear and AvrRpt2EA is recognized by Arabidopsis RPS2 when expressed in pseudomonas syringae.
    Zhao Y; He SY; Sundin GW
    Mol Plant Microbe Interact; 2006 Jun; 19(6):644-54. PubMed ID: 16776298
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Global virulence regulation networks in phytopathogenic bacteria.
    Mole BM; Baltrus DA; Dangl JL; Grant SR
    Trends Microbiol; 2007 Aug; 15(8):363-71. PubMed ID: 17627825
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A plant growth-promoting pseudomonad is closely related to the Pseudomonas syringae complex of plant pathogens.
    Blakney AJ; Patten CL
    FEMS Microbiol Ecol; 2011 Sep; 77(3):546-57. PubMed ID: 21609343
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Pseudomonas syringae effector AvrPtoB suppresses basal defence in Arabidopsis.
    de Torres M; Mansfield JW; Grabov N; Brown IR; Ammouneh H; Tsiamis G; Forsyth A; Robatzek S; Grant M; Boch J
    Plant J; 2006 Aug; 47(3):368-82. PubMed ID: 16792692
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Loss of wbpL disrupts O-polysaccharide synthesis and impairs virulence of plant-associated Pseudomonas strains.
    Kutschera A; Schombel U; Wröbel M; Gisch N; Ranf S
    Mol Plant Pathol; 2019 Nov; 20(11):1535-1549. PubMed ID: 31559681
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.