These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 29261199)

  • 1. An enhanced low-frequency vibration ZnO nanorod-based tuning fork piezoelectric nanogenerator.
    Deng W; Jin L; Chen Y; Chu W; Zhang B; Sun H; Xiong D; Lv Z; Zhu M; Yang W
    Nanoscale; 2018 Jan; 10(2):843-847. PubMed ID: 29261199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance.
    Wang P; Du H
    Rev Sci Instrum; 2015 Jul; 86(7):075002. PubMed ID: 26233403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Porosity Modulated High-Performance Piezoelectric Nanogenerator Based on Organic/Inorganic Nanomaterials for Self-Powered Structural Health Monitoring.
    Rana MM; Khan AA; Huang G; Mei N; Saritas R; Wen B; Zhang S; Voss P; Abdel-Rahman E; Leonenko Z; Islam S; Ban D
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):47503-47512. PubMed ID: 32969216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning ZnO-based piezoelectric nanogenerator efficiency through n-ZnO/p-NiO bulk interfacing.
    Mahapatra A; Ajimsha RS; Deepak D; Misra P
    Sci Rep; 2024 May; 14(1):11871. PubMed ID: 38789586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Tuning Fork Frequency Up-Conversion Energy Harvester.
    Wu Q; Gao S; Jin L; Zhang X; Yin Z; Wang C
    Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Low Frequency Vibration Energy Harvester Using ZnO Nanowires on Elastic Interdigitated Electrodes.
    Yoon BR; Park JH; Lee SK
    J Nanosci Nanotechnol; 2019 Jan; 19(1):66-72. PubMed ID: 30327003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of Sn-doped ZnO based ecofriendly piezoelectric nanogenerator for energy harvesting application.
    Manikandan M; Rajagopalan P; Patra N; Jayachandran S; Muralidharan M; Mani Prabu SS; Palani IA; Singh V
    Nanotechnology; 2020 May; 31(18):185401. PubMed ID: 31935698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Note: Enhanced energy harvesting from low-frequency magnetic fields utilizing magneto-mechano-electric composite tuning-fork.
    Yang A; Li P; Wen Y; Yang C; Wang D; Zhang F; Zhang J
    Rev Sci Instrum; 2015 Jun; 86(6):066102. PubMed ID: 26133877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor.
    Li X; Lin ZH; Cheng G; Wen X; Liu Y; Niu S; Wang ZL
    ACS Nano; 2014 Oct; 8(10):10674-81. PubMed ID: 25268317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A La-doped ZnO ultra-flexible flutter-piezoelectric nanogenerator for energy harvesting and sensing applications: a novel renewable source of energy.
    Pandey R; Khandelwal G; Palani IA; Singh V; Kim SJ
    Nanoscale; 2019 Aug; 11(29):14032-14041. PubMed ID: 31310259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Harvesting Ambient Vibration Energy over a Wide Frequency Range for Self-Powered Electronics.
    Wang X; Niu S; Yi F; Yin Y; Hao C; Dai K; Zhang Y; You Z; Wang ZL
    ACS Nano; 2017 Feb; 11(2):1728-1735. PubMed ID: 28094509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A spring-assisted hybrid triboelectric-electromagnetic nanogenerator for harvesting low-frequency vibration energy and creating a self-powered security system.
    Wang W; Xu J; Zheng H; Chen F; Jenkins K; Wu Y; Wang H; Zhang W; Yang R
    Nanoscale; 2018 Aug; 10(30):14747-14754. PubMed ID: 30043011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Piezo-Electromagnetic Coupling Multi-Directional Vibration Energy Harvester Based on Frequency Up-Conversion Technique.
    Shi G; Chen J; Peng Y; Shi M; Xia H; Wang X; Ye Y; Xia Y
    Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31940778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Cantilever Beam-Based Triboelectric Nanogenerator as a Drill Pipe Transverse Vibration Energy Harvester Powering Intelligent Exploitation System.
    Lian Z; Wang Q; Zhu C; Zhao C; Zhao Q; Wang Y; Hu Z; Xu R; Lin Y; Chen T; Liu X; Xu X; Liu L; Xiao X; Xu M
    Sensors (Basel); 2022 Jun; 22(11):. PubMed ID: 35684908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of Piezoelectric ZnO Nanowires Energy Harvester on Flexible Substrate Coated with Various Seed Layer Structures.
    Slimani Tlemcani T; Justeau C; Nadaud K; Alquier D; Poulin-Vittrant G
    Nanomaterials (Basel); 2021 May; 11(6):. PubMed ID: 34071709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of Multi-Degree-Of-Freedom Piezoelectric Energy Harvester Using Interdigital Shaped Cantilevers.
    Cho H; Park J; Park JY
    J Nanosci Nanotechnol; 2016 May; 16(5):5252-4. PubMed ID: 27483909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Frequency-Adjustable Tuning Fork Electromagnetic Energy Harvester.
    Wu Q; Gao S; Jin L; Guo S; Yin Z; Fu H
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trapezoidal Cantilever-Structure Triboelectric Nanogenerator Integrated with a Power Management Module for Low-Frequency Vibration Energy Harvesting.
    Ren Z; Wu L; Zhang J; Wang Y; Wang Y; Li Q; Wang F; Liang X; Yang R
    ACS Appl Mater Interfaces; 2022 Feb; 14(4):5497-5505. PubMed ID: 35061351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and Optimization of Piezoelectric Cantilever Beam Vibration Energy Harvester.
    Xu Q; Gao A; Li Y; Jin Y
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Research on the Characteristics and Application of Two-Degree-of-Freedom Diagonal Beam Piezoelectric Vibration Energy Harvester.
    Ma T; Sun K; Jia S; Du F; Zhang Z
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.