These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 29261494)

  • 1. [G-quadruplex: key controllers of human genome duplication].
    Poulet-Benedetti J; Valton AL; Prioleau MN
    Med Sci (Paris); 2017 Dec; 33(12):1063-1070. PubMed ID: 29261494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. G-Quadruplexes in DNA Replication: A Problem or a Necessity?
    Valton AL; Prioleau MN
    Trends Genet; 2016 Nov; 32(11):697-706. PubMed ID: 27663528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. G-Quadruplexes and DNA Replication Origins.
    Prioleau MN
    Adv Exp Med Biol; 2017; 1042():273-286. PubMed ID: 29357063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. G4 motifs affect origin positioning and efficiency in two vertebrate replicators.
    Valton AL; Hassan-Zadeh V; Lema I; Boggetto N; Alberti P; Saintomé C; Riou JF; Prioleau MN
    EMBO J; 2014 Apr; 33(7):732-46. PubMed ID: 24521668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unraveling cell type-specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs.
    Besnard E; Babled A; Lapasset L; Milhavet O; Parrinello H; Dantec C; Marin JM; Lemaitre JM
    Nat Struct Mol Biol; 2012 Aug; 19(8):837-44. PubMed ID: 22751019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dimeric G-quadruplex motifs-induced NFRs determine strong replication origins in vertebrates.
    Poulet-Benedetti J; Tonnerre-Doncarli C; Valton AL; Laurent M; Gérard M; Barinova N; Parisis N; Massip F; Picard F; Prioleau MN
    Nat Commun; 2023 Aug; 14(1):4843. PubMed ID: 37563125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of G-quadruplex regions in mammalian replication origin activity.
    Prorok P; Artufel M; Aze A; Coulombe P; Peiffer I; Lacroix L; Guédin A; Mergny JL; Damaschke J; Schepers A; Cayrou C; Teulade-Fichou MP; Ballester B; Méchali M
    Nat Commun; 2019 Jul; 10(1):3274. PubMed ID: 31332171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. G-quadruplex-interacting compounds alter latent DNA replication and episomal persistence of KSHV.
    Madireddy A; Purushothaman P; Loosbroock CP; Robertson ES; Schildkraut CL; Verma SC
    Nucleic Acids Res; 2016 May; 44(8):3675-94. PubMed ID: 26837574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA replication origin plasticity and perturbed fork progression in human inverted repeats.
    Lebofsky R; Bensimon A
    Mol Cell Biol; 2005 Aug; 25(15):6789-97. PubMed ID: 16024811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution profiling of Drosophila replication start sites reveals a DNA shape and chromatin signature of metazoan origins.
    Comoglio F; Schlumpf T; Schmid V; Rohs R; Beisel C; Paro R
    Cell Rep; 2015 May; 11(5):821-34. PubMed ID: 25921534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eukaryotic replication origins: control in space and time.
    Diller JD; Raghuraman MK
    Trends Biochem Sci; 1994 Aug; 19(8):320-5. PubMed ID: 7940676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New insights into replication origin characteristics in metazoans.
    Cayrou C; Coulombe P; Puy A; Rialle S; Kaplan N; Segal E; Méchali M
    Cell Cycle; 2012 Feb; 11(4):658-67. PubMed ID: 22373526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of Unidirectional Replication Forks in the Mouse Genome.
    Zerbib A; Simon I
    Int J Mol Sci; 2023 Jun; 24(11):. PubMed ID: 37298562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global regulation of genome duplication in eukaryotes: an overview from the epifluorescence microscope.
    Herrick J; Bensimon A
    Chromosoma; 2008 Jun; 117(3):243-60. PubMed ID: 18197411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA replication origins fire stochastically in fission yeast.
    Patel PK; Arcangioli B; Baker SP; Bensimon A; Rhind N
    Mol Biol Cell; 2006 Jan; 17(1):308-16. PubMed ID: 16251353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms involved in regulating DNA replication origins during the cell cycle and in response to DNA damage.
    Early A; Drury LS; Diffley JF
    Philos Trans R Soc Lond B Biol Sci; 2004 Jan; 359(1441):31-8. PubMed ID: 15065654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Replication fork velocities at adjacent replication origins are coordinately modified during DNA replication in human cells.
    Conti C; Saccà B; Herrick J; Lalou C; Pommier Y; Bensimon A
    Mol Biol Cell; 2007 Aug; 18(8):3059-67. PubMed ID: 17522385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal profile of replication of human chromosomes.
    Jeon Y; Bekiranov S; Karnani N; Kapranov P; Ghosh S; MacAlpine D; Lee C; Hwang DS; Gingeras TR; Dutta A
    Proc Natl Acad Sci U S A; 2005 May; 102(18):6419-24. PubMed ID: 15845769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Replication fork movement sets chromatin loop size and origin choice in mammalian cells.
    Courbet S; Gay S; Arnoult N; Wronka G; Anglana M; Brison O; Debatisse M
    Nature; 2008 Sep; 455(7212):557-60. PubMed ID: 18716622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The dynamic replicon: adapting to a changing cellular environment.
    Herrick J
    Bioessays; 2010 Feb; 32(2):153-64. PubMed ID: 20091757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.