These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 29261701)

  • 1. PEGylation of zinc nanoparticles amplifies their ability to enhance olfactory responses to odorant.
    Singletary M; Hagerty S; Muramoto S; Daniels Y; MacCrehan WA; Stan G; Lau JW; Pustovyy O; Globa L; Morrison EE; Sorokulova I; Vodyanoy V
    PLoS One; 2017; 12(12):e0189273. PubMed ID: 29261701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. After oxidation, zinc nanoparticles lose their ability to enhance responses to odorants.
    Hagerty S; Daniels Y; Singletary M; Pustovyy O; Globa L; MacCrehan WA; Muramoto S; Stan G; Lau JW; Morrison EE; Sorokulova I; Vodyanoy V
    Biometals; 2016 Dec; 29(6):1005-1018. PubMed ID: 27649965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Olfactory responses to explosives associated odorants are enhanced by zinc nanoparticles.
    Moore CH; Pustovyy O; Dennis JC; Moore T; Morrison EE; Vodyanoy VJ
    Talanta; 2012 Jan; 88():730-3. PubMed ID: 22265566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endogenous zinc nanoparticles in the rat olfactory epithelium are functionally significant.
    Singletary M; Lau JW; Hagerty S; Pustovyy O; Globa L; Vodyanoy V
    Sci Rep; 2020 Oct; 10(1):18435. PubMed ID: 33116197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of odorant-induced responses in olfactory receptor neurons by zinc nanoparticles.
    Viswaprakash N; Dennis JC; Globa L; Pustovyy O; Josephson EM; Kanju P; Morrison EE; Vodyanoy VJ
    Chem Senses; 2009 Sep; 34(7):547-57. PubMed ID: 19525316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Odorant response kinetics from cultured mouse olfactory epithelium at different ages in vitro.
    Viswaprakash N; Josephson EM; Dennis JC; Yilma S; Morrison EE; Vodyanoy VJ
    Cells Tissues Organs; 2010; 192(6):361-73. PubMed ID: 20664250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute toxicity of zinc oxide nanoparticles to the rat olfactory system after intranasal instillation.
    Gao L; Yang ST; Li S; Meng Y; Wang H; Lei H
    J Appl Toxicol; 2013 Oct; 33(10):1079-88. PubMed ID: 23315988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineered metal nanoparticles in the sub-nanomolar levels kill cancer cells.
    Vodyanoy V; Daniels Y; Pustovyy O; MacCrehan WA; Muramoto S; Stan G
    Int J Nanomedicine; 2016; 11():1567-76. PubMed ID: 27143879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical-modification studies on rat olfactory mucosa using a thiol-specific reagent and enzymatic iodination.
    Shirley S; Polak E; Dodd GH
    Eur J Biochem; 1983 May; 132(3):485-94. PubMed ID: 6852009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of polyethylene glycol (PEG) chain organization on the physicochemical properties of poly(D, L-lactide) (PLA) based nanoparticles.
    Essa S; Rabanel JM; Hildgen P
    Eur J Pharm Biopharm; 2010 Jun; 75(2):96-106. PubMed ID: 20211727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PEGylation of gold-decorated silica nanoparticles in the aerosol phase.
    Lei P; Girshick SL
    Nanotechnology; 2013 Aug; 24(33):335602. PubMed ID: 23881233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salamander olfactory bulb neuronal activity observed by video rate, voltage-sensitive dye imaging. III. Spatial and temporal properties of responses evoked by odorant stimulation.
    Cinelli AR; Hamilton KA; Kauer JS
    J Neurophysiol; 1995 May; 73(5):2053-71. PubMed ID: 7542699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zinc nanoparticles interact with olfactory receptor neurons.
    Vodyanoy V
    Biometals; 2010 Dec; 23(6):1097-103. PubMed ID: 20559685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of Odor-Induced Activity in the Canine Brain by Zinc Nanoparticles: A Functional MRI Study in Fully Unrestrained Conscious Dogs.
    Jia H; Pustovyy OM; Wang Y; Waggoner P; Beyers RJ; Schumacher J; Wildey C; Morrison E; Salibi N; Denney TS; Vodyanoy VJ; Deshpande G
    Chem Senses; 2016 Jan; 41(1):53-67. PubMed ID: 26464498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topographic patterns of responsiveness to odorants in the rat olfactory epithelium.
    Mackay-Sim A; Kesteven S
    J Neurophysiol; 1994 Jan; 71(1):150-60. PubMed ID: 8158224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatially organized response zones in rat olfactory epithelium.
    Scott JW; Shannon DE; Charpentier J; Davis LM; Kaplan C
    J Neurophysiol; 1997 Apr; 77(4):1950-62. PubMed ID: 9114247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zinc Nanoparticles-equipped Bioelectronic Nose Using a Microelectrode Array for Odorant Detection.
    Zhang Q; Zhang D; Li N; Lu Y; Yao Y; Li S; Liu Q
    Anal Sci; 2016; 32(4):387-93. PubMed ID: 27063709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Responses of the rat olfactory epithelium to retronasal air flow.
    Scott JW; Acevedo HP; Sherrill L; Phan M
    J Neurophysiol; 2007 Mar; 97(3):1941-50. PubMed ID: 17215498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(ethylene glycol)-stabilized silver nanoparticles for bioanalytical applications of SERS spectroscopy.
    Shkilnyy A; Soucé M; Dubois P; Warmont F; Saboungi ML; Chourpa I
    Analyst; 2009 Sep; 134(9):1868-72. PubMed ID: 19684912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regional distribution of rat electroolfactogram.
    Ezeh PI; Davis LM; Scott JW
    J Neurophysiol; 1995 Jun; 73(6):2207-20. PubMed ID: 7666133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.