These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 29261758)

  • 1. Numerical calculation of boundary layers and wake characteristics of high-speed trains with different lengths.
    Jia L; Zhou D; Niu J
    PLoS One; 2017; 12(12):e0189798. PubMed ID: 29261758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on prediction in far-field aerodynamic noise of long-marshalling high-speed train.
    Qin D; Li T; Dai Z; Zhang J
    Environ Sci Pollut Res Int; 2022 Dec; 29(57):86580-86594. PubMed ID: 35678971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical analysis of the slipstream development around a high-speed train in a double-track tunnel.
    Fu M; Li P; Liang XF
    PLoS One; 2017; 12(3):e0175044. PubMed ID: 28362835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Moving Model Test of High-Speed Train Aerodynamic Drag Based on Stagnation Pressure Measurements.
    Yang M; Du J; Li Z; Huang S; Zhou D
    PLoS One; 2017; 12(1):e0169471. PubMed ID: 28095441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical Simulation and Analysis of Turbulent Characteristics near Wake Area of Vacuum Tube EMU.
    Cui H; Chen G; Guan Y; Zhao H
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of Drag Reduction Technologies for Light-Duty Vehicles Using Surface, Wake and Underbody Pressure Measurements to Complement Aerodynamic Drag Measurements.
    de Souza F; Raeesi A; Belzile M; Caffrey C; Schmitt A
    SAE Int J Adv Curr Pract Mobil; 2019; 1(3):1233-1250. PubMed ID: 32285044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wake analysis of aerodynamic components for the glide envelope of a jackdaw (Corvus monedula).
    KleinHeerenbrink M; Warfvinge K; Hedenström A
    J Exp Biol; 2016 May; 219(Pt 10):1572-81. PubMed ID: 26994178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-Objective Aerodynamic Optimization of the Streamlined Shape of High-Speed Trains Based on the Kriging Model.
    Xu G; Liang X; Yao S; Chen D; Li Z
    PLoS One; 2017; 12(1):e0170803. PubMed ID: 28129365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probability analysis of multiple-tank-car release incidents in railway hazardous materials transportation.
    Liu X; Saat MR; Barkan CP
    J Hazard Mater; 2014 Jul; 276():442-51. PubMed ID: 24929785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Body surface adaptations to boundary-layer dynamics.
    Videler JJ
    Symp Soc Exp Biol; 1995; 49():1-20. PubMed ID: 8571218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical study on the influence of wall temperature gradient on aerodynamic characteristics of low aspect ratio flying wing configuration.
    Lin P; Liu X; Xiong N; Wang X; Shang M; Liu G; Tao Y
    Sci Rep; 2021 Aug; 11(1):16295. PubMed ID: 34381068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-Eddy BreakUp Devices - a 40 Years Perspective from a Stockholm Horizon.
    Alfredsson PH; Örlü R
    Flow Turbul Combust; 2018; 100(4):877-888. PubMed ID: 30069144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aerodynamic study of different cyclist positions: CFD analysis and full-scale wind-tunnel tests.
    Defraeye T; Blocken B; Koninckx E; Hespel P; Carmeliet J
    J Biomech; 2010 May; 43(7):1262-8. PubMed ID: 20171640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of passive drag in swimming by numerical simulation and analytical procedure.
    Barbosa TM; Ramos R; Silva AJ; Marinho DA
    J Sports Sci; 2018 Mar; 36(5):492-498. PubMed ID: 28453398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of canard's optimum geometric design on wake control behind the car using Artificial Neural Network and Genetic Algorithm.
    Rostamzadeh-Renani M; Baghoolizadeh M; Rostamzadeh-Renani R; Toghraie D; Ahmadi B
    ISA Trans; 2022 Dec; 131():427-443. PubMed ID: 35717215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A bio-inspired device for drag reduction on a three-dimensional model vehicle.
    Kim D; Lee H; Yi W; Choi H
    Bioinspir Biomim; 2016 Mar; 11(2):026004. PubMed ID: 26963693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical simulation of nonperiodic rail operation diagram characteristics.
    Qian Y; Wang B; Zeng J; Wang X
    Comput Intell Neurosci; 2014; 2014():194975. PubMed ID: 25435863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skin-friction drag analysis from the forced convection modeling in simplified underwater swimming.
    Polidori G; Taïar R; Fohanno S; Mai TH; Lodini A
    J Biomech; 2006; 39(13):2535-41. PubMed ID: 16153653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shark skin-inspired designs that improve aerodynamic performance.
    Domel AG; Saadat M; Weaver JC; Haj-Hariri H; Bertoldi K; Lauder GV
    J R Soc Interface; 2018 Feb; 15(139):. PubMed ID: 29436512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drag reduction of wake flow by shear-driven rotation.
    Tao J; Bao Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023013. PubMed ID: 23496616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.