These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 29262253)

  • 1. Single-Droplet Multiplex Bioassay on a Robust and Stretchable Extreme Wetting Substrate through Vacuum-Based Droplet Manipulation.
    Han H; Lee JS; Kim H; Shin S; Lee J; Kim J; Hou X; Cho SW; Seo J; Lee T
    ACS Nano; 2018 Feb; 12(2):932-941. PubMed ID: 29262253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Path-programmable water droplet manipulations on an adhesion controlled superhydrophobic surface.
    Seo J; Lee SK; Lee J; Seung Lee J; Kwon H; Cho SW; Ahn JH; Lee T
    Sci Rep; 2015 Jul; 5():12326. PubMed ID: 26202206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Droplet-driven transports on superhydrophobic-patterned surface microfluidics.
    Xing S; Harake RS; Pan T
    Lab Chip; 2011 Nov; 11(21):3642-8. PubMed ID: 21918770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-density fabrication of normally closed microfluidic valves by patterned deactivation of oxidized polydimethylsiloxane.
    Mosadegh B; Tavana H; Lesher-Perez SC; Takayama S
    Lab Chip; 2011 Feb; 11(4):738-42. PubMed ID: 21132212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-Dependent Wetting Behavior of PDMS Surfaces with Bioinspired, Hierarchical Structures.
    Mishra H; Schrader AM; Lee DW; Gallo A; Chen SY; Kaufman Y; Das S; Israelachvili JN
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8168-74. PubMed ID: 26709928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic wettability of polyethylene glycol-modified poly(dimethylsiloxane) surfaces in an aqueous/organic two-phase system.
    Fukuyama M; Tokeshi M; Proskurnin MA; Hibara A
    Lab Chip; 2018 Jan; 18(2):356-361. PubMed ID: 29264613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymer and particle adsorption at the PDMS droplet-water interface.
    Prestidge CA; Barnes T; Simovic S
    Adv Colloid Interface Sci; 2004 May; 108-109():105-18. PubMed ID: 15072933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Super-hydrophobic, highly adhesive, polydimethylsiloxane (PDMS) surfaces.
    Stanton MM; Ducker RE; MacDonald JC; Lambert CR; McGimpsey WG
    J Colloid Interface Sci; 2012 Feb; 367(1):502-8. PubMed ID: 22129630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel combination of hydrophilic/hydrophobic surface for large wettability difference and its application to liquid manipulation.
    Kobayashi T; Shimizu K; Kaizuma Y; Konishi S
    Lab Chip; 2011 Feb; 11(4):639-44. PubMed ID: 21127789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic superhydrophobic and highly oleophobic cotton textiles.
    Hoefnagels HF; Wu D; de With G; Ming W
    Langmuir; 2007 Dec; 23(26):13158-63. PubMed ID: 17985939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inkjet-printed microelectrodes on PDMS as biosensors for functionalized microfluidic systems.
    Wu J; Wang R; Yu H; Li G; Xu K; Tien NC; Roberts RC; Li D
    Lab Chip; 2015 Feb; 15(3):690-5. PubMed ID: 25412449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving superamphiphobicity by mimicking tree-branch topography.
    Ding W; Dorao CA; Fernandino M
    J Colloid Interface Sci; 2022 Apr; 611():118-128. PubMed ID: 34933190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitigated reactive oxygen species generation leads to an improvement of cell proliferation on poly[glycidyl methacrylate-co-poly(ethylene glycol) methacrylate] functionalized polydimethylsiloxane surfaces.
    Yu L; Shi Z; Gao L; Li C
    J Biomed Mater Res A; 2015 Sep; 103(9):2987-97. PubMed ID: 25711883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wetting transition and optimal design for microstructured surfaces with hydrophobic and hydrophilic materials.
    Park CI; Jeong HE; Lee SH; Cho HS; Suh KY
    J Colloid Interface Sci; 2009 Aug; 336(1):298-303. PubMed ID: 19426991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PDMS spreading morphological patterns on substrates of different hydrophilicity in air vacuum and water.
    Zbik MS; Frost RL
    J Colloid Interface Sci; 2010 Apr; 344(2):563-74. PubMed ID: 20144831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoparticles of varying hydrophobicity at the emulsion droplet-water interface: adsorption and coalescence stability.
    Simovic S; Prestidge CA
    Langmuir; 2004 Sep; 20(19):8357-65. PubMed ID: 15350114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Throughput Generation of Durable Droplet Arrays for Single-Cell Encapsulation, Culture, and Monitoring.
    Wu H; Chen X; Gao X; Zhang M; Wu J; Wen W
    Anal Chem; 2018 Apr; 90(7):4303-4309. PubMed ID: 29569893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Consequences of water between two hydrophobic surfaces on adhesion and wetting.
    Defante AP; Burai TN; Becker ML; Dhinojwala A
    Langmuir; 2015 Mar; 31(8):2398-406. PubMed ID: 25668056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(dimethyl siloxane) surface modification by low pressure plasma to improve its characteristics towards biomedical applications.
    Pinto S; Alves P; Matos CM; Santos AC; Rodrigues LR; Teixeira JA; Gil MH
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):20-6. PubMed ID: 20638249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.