These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 29262374)
1. Direct Numerical Simulation of Cellular-Scale Blood Flow in 3D Microvascular Networks. Balogh P; Bagchi P Biophys J; 2017 Dec; 113(12):2815-2826. PubMed ID: 29262374 [TBL] [Abstract][Full Text] [Related]
2. A computational study of red blood cell deformability effect on hemodynamic alteration in capillary vessel networks. Ebrahimi S; Bagchi P Sci Rep; 2022 Mar; 12(1):4304. PubMed ID: 35277592 [TBL] [Abstract][Full Text] [Related]
3. A micro-scale simulation of red blood cell passage through symmetric and asymmetric bifurcated vessels. Wang T; Rongin U; Xing Z Sci Rep; 2016 Feb; 6():20262. PubMed ID: 26830454 [TBL] [Abstract][Full Text] [Related]
4. Microvascular blood flow resistance: Role of red blood cell migration and dispersion. Katanov D; Gompper G; Fedosov DA Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979 [TBL] [Abstract][Full Text] [Related]
5. A computational modeling of blood flow in asymmetrically bifurcating microvessels and its experimental validation. Lee TR; Hong JA; Yoo SS; Kim DW Int J Numer Method Biomed Eng; 2018 Jun; 34(6):e2981. PubMed ID: 29521012 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional distribution of wall shear stress and its gradient in red cell-resolved computational modeling of blood flow in in vivo-like microvascular networks. Balogh P; Bagchi P Physiol Rep; 2019 May; 7(9):e14067. PubMed ID: 31062494 [TBL] [Abstract][Full Text] [Related]
7. Resistance to blood flow in microvessels in vivo. Pries AR; Secomb TW; Gessner T; Sperandio MB; Gross JF; Gaehtgens P Circ Res; 1994 Nov; 75(5):904-15. PubMed ID: 7923637 [TBL] [Abstract][Full Text] [Related]
8. Development of a general method for designing microvascular networks using distribution of wall shear stress. Sayed Razavi M; Shirani E J Biomech; 2013 Sep; 46(13):2303-9. PubMed ID: 23891174 [TBL] [Abstract][Full Text] [Related]
9. Numerical simulation of blood flow through microvascular capillary networks. Pozrikidis C Bull Math Biol; 2009 Aug; 71(6):1520-41. PubMed ID: 19267162 [TBL] [Abstract][Full Text] [Related]
10. Heterogeneous partition of cellular blood-borne nanoparticles through microvascular bifurcations. Liu ZL; Clausen JR; Wagner JL; Butler KS; Bolintineanu DS; Lechman JB; Rao RR; Aidun CK Phys Rev E; 2020 Jul; 102(1-1):013310. PubMed ID: 32795082 [TBL] [Abstract][Full Text] [Related]
12. Flow dynamics of erythrocytes in microvessels of isolated rabbit mesentery: cell-free layer and flow resistance. Tateishi N; Suzuki Y; Soutani M; Maeda N J Biomech; 1994 Sep; 27(9):1119-25. PubMed ID: 7929461 [TBL] [Abstract][Full Text] [Related]
13. Application of machine learning in predicting blood flow and red cell distribution in capillary vessel networks. Ebrahimi S; Bagchi P J R Soc Interface; 2022 Aug; 19(193):20220306. PubMed ID: 35946164 [TBL] [Abstract][Full Text] [Related]
14. Numerical simulation of red blood cell distributions in three-dimensional microvascular bifurcations. Hyakutake T; Nagai S Microvasc Res; 2015 Jan; 97():115-23. PubMed ID: 25446286 [TBL] [Abstract][Full Text] [Related]
15. In vitro analysis of blood flow in a microvascular network with realistic geometry. Kodama Y; Aoki H; Yamagata Y; Tsubota K J Biomech; 2019 May; 88():88-94. PubMed ID: 30975487 [TBL] [Abstract][Full Text] [Related]
16. Dynamics of blood flow: modeling of the Fåhræus-Lindqvist effect. Chebbi R J Biol Phys; 2015 Jun; 41(3):313-26. PubMed ID: 25702195 [TBL] [Abstract][Full Text] [Related]